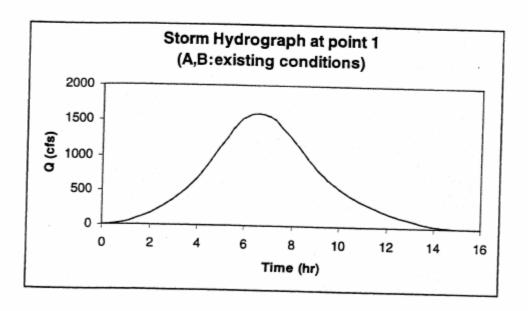

CIVL 3066 Engineering Hydrology Spring 2009

Solution : Assignment Number 2

- 2.5. A sketch of the Buffalo Creek Watershed is shown in Fig. P2.5. Areas A and B are identical in size, shape, slope, and channel length. UHs (1 hr) are provided for natural and fully developed conditions for both areas.
 - a) Assuming natural conditions for both areas, evaluate the peak outflow at point 1 if 2.5 in./hr of rain falls for 2 hr. Assume a total infiltration loss of 1 in.
 - b) Assume that area B has reached full development and area A has remained in natural conditions.
 Determine the outflow hydrograph at point 1 if a net rainfall of 2 in./hr falls for 1 hr.
 - c) Sketch the outflow hydrograph for the Buffalo Creek Watershed under complete development (A and B both urbanized) for the rainfall given in part (b).

Time (hr)	0	1	2	3	4	5	6	7	8
$UH_{\text{dev}}(\text{cfs})$	0	40	196	290	268	185	90	30	0
Time (hr)	0	1	2	3	4	5	6	7	8
UH (nat)	0	12	32	62	108	180	208	182	126
Time (hr)	9	10	11	12	13	14			
UH (nat)	80	53	32	18	6	0			

2.5. (cont)


a) Assuming uniform loss, we get a loss rate of 0.5 in/hr.

Net rainfall intensity = 2.5 - 0.5 = 2 in/hr for 2 hours

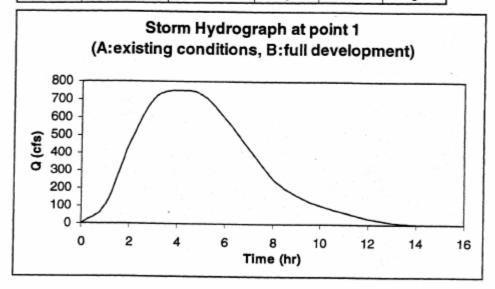
The storm hydrograph at point 1 is found by combining the storm hydrographs for areas A and B.

Existing conditions for both areas $\} \Rightarrow Q_A = Q_B$

Time (hr)	U _{exist} (cfs)	P1*U	P2*U	Q _A (cfs)	Q _B (cfs)	Q (cfs)
0	00	0		0	0	0
1	12	24	0	24	24	48
2	32	64	24	88	88	176
3	62	124	64	188	188	376
4	108	216	124	340	340	680
5	180	360	216	576	576	1152
6	208	416	360	776	776	1552
7	182	364	416	780	780	1560
8	126	252	364	616	616	1232
9	80	160	252	412	412	824
10	53	106	160	266	266	532
11	32	64	106	170	170	340
12	18	36	64	100	100	200
13	6	12	36	48	48	96
14	0	0	12	12	12	24
15	0	0	0	0	0	0

Qp = 1560 cfs at t = 7hr.

2.5. (cont)

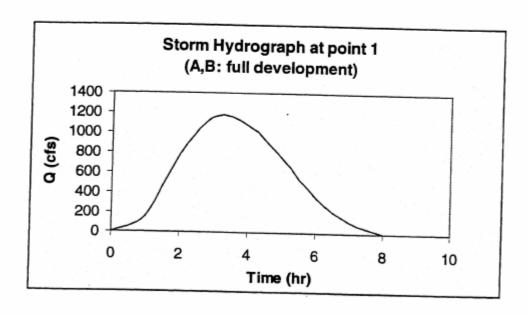

b) In this case we have to determine the storm hydrograph at point one for a 1 - hr duration rainfall.

QA natural (existing) conditions

QB full development

i = 2 in/hr for 1 - hr.

Time (hr)	U _{exist(} cfs)	U _{devel} (cfs)	Q _A (cfs)	Q _B (cfs)	Q (cfs)
0	.0	0	0	0	0
1	12	40	24	80	104
2	32	196	64	392	456
3	62	290	124	580	704
4	108	268	216	536	752
5	180	185	360	370	730
6	208	90	416	180	596
7	182	30	364	60	424
8	126	0	252	0	252
9	80		160		160
10	53		106		106
11	32		64		64
12	18		36		36
13	6		12		12
14	0		0		0

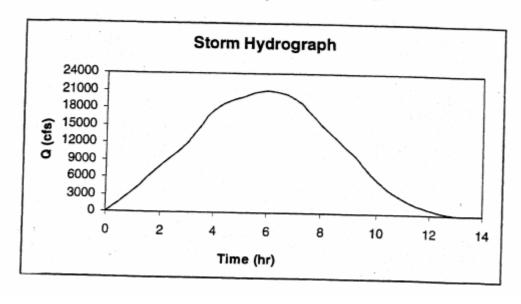

 $Q_p = 752 \text{ cfs at } t = 4 \text{ hr}$

2.5. (cont)

c) Full Development for both areas} => $Q_A = Q_B$

i = 2in/hr for 1 hr

Time (hr)	U _{devel} (cfs)	Q _A (cfs)	Q _B (cfs)	Q (cfs)
0	0	0	0	0
1	40	80	80	160
2	196	392	392	784
3	290	580	580	1160
4 .	268	536	536	1072
5	185	370	370	740
6	90	180	180	360
7	30	60	60	120
8	0	0	0	0


 $Q_P = 1160 \text{ cfs at } t = 3 \text{ hr}$

2.6. A watershed basin is approximately 43 square miles and has the following time-area relationship between its subbasins and the outlet.

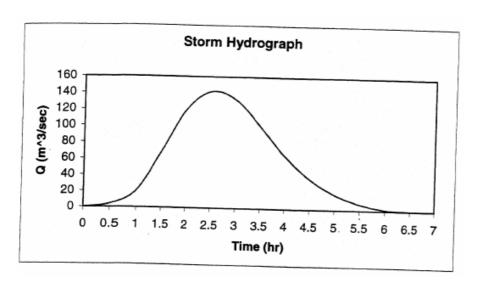
STORM DATA

		•	Time	Rainfall Excess
			(hr)	(in./hr)
TIME (hr)	AREA (sq mi)	-	1	0.6
1	9.5		2	0.9
2	6.7		3	1.0
3	5.2		4	1.2
4	8.0		5	0.7
5	6.6		6	0.4
6	7.0		7	0.2
		-		

Use the storm measurements to produce an outflow hydrograph in cfs (ac-in/hr) using the time-area method. Use an Excel spreadsheet to perform calculations.

	-	_	_	_	_	_	_	_	_	_	_	_	_	_	
0	(cfs)	0	3648	8045	11936	17651	19872	21037	19661	15322	11046	5850	2637	968	0
R7*Area	(cfs)								1216	857.6	9.599	1024	844.8	968	0
R6*Area	(cfs)	7						2432	1715.2	1331.2	2048	1689.6	1792	0	
R5*Area	(cfs)						4256	3001.6	2329.6	3584	2956.8	3136	0		
R4*Area	(cfs)					7296	5145.6	3993.6	6144	5068.8	5376	0			
R3*Area R4*Area R5*Area R6*Area R7*Area	(cfs)				6080	4288	3328	5120	4224	4480	0				
Intensity R1*Area R2*Area	(cfs)			5472	3859.2	2995.2	4608	3801.6	4032	0					,
R1*Area	(cfs)		3648	2572.8	1996.8	3072	2534.4	2688	0					-	
Intensity	(in/hr)		9.0	6.0	-	1.2	0.7	0.4	0.2	-					
Area	(ac)		6080	4288	3328	5120	4224	4480							-
Time to	gage (hr)		-	2	ဗ	4	2	9							
Area	(mi²)		9.5	6.7	5.2	8	9.9	7							
Time	(hr)	0	-	2	3	4	5	9	7	8	6	9	Ξ	12	13

2.12. Using the convolution equation, develop a storm hydrograph for the rainfall intensity i and infiltration f given in the table (at the end of each time step) using the 30-min unit hydrograph U given below.

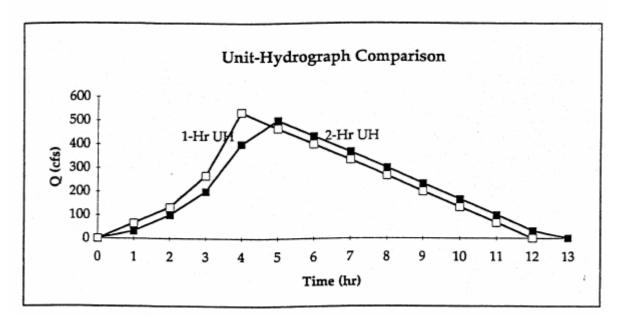

For each interval, the net rainfall intensity is as follows:

Time (hr)	Gross Rainfall Intensity (cm/hr)	Infiltration Rate (cm/hr)	Net Rainfall Intensity (cm/hr)
0-0.5	1	0.75	0.25
0.5-1	1.25	0.5	0.75
1-1.5	2.5	0.4	2.1
1.5-2	1	0.3	0.7

Then $P_n = [0.125, 0.375, 1.05, 0.35]$

Using an Excel Spreadsheet program, we develop the storm hydrograph.

Time	U	P1*Un	P2*Un	P3*Un	P4*Un	Q
(hr)	(m^3/s)					(m^3/s)
0	0	0				0
0.5	33	4.125	0			4.125
1	66	8.25	12.375	0		20.625
1.5	80	10	24.75	34.65	0	69.4
2	75	9.375	30	69.3	11.55	120.225
2.5	55	6.875	28.125	84	23.1	142.1
3	35	4.375	20.625	78.75	28	131.75
3.5	20	2.5	13.125	57.75	26.25	99.625
4	10	1.25	7.5	36.75	19.25	64.75
4.5	4	0.5	3.75	21	12.25	37.5
5	00	0	1.5	10.5	7	19
5.5			0	4.2	3.5	7.7
6				0	1.4	1.4
6.5					0	0



2.17.
Given the following 2-hr unit hydrograph, calculate the 1-hr unit hydrograph. Then back calculate and find the 2-hr unit hydrograph to prove that the method of calculation is accurate. Graph both unit hydrographs against time on the same plot.

TIME (hr)	0	1	2	3	4	5	6
FLOW (cfs)	0	33	100	200	400	500	433
TIME (hr)	7	8	9	10	11	12	13
FLOW (cfs)	367	300	233	167	100	33	0

- The following steps describe the procedure used to achieve the results summarized in the spreadsheet and graph below
 - Lag the 2 hr unit hydrograph by 2 hr increments to obtain the S –curve
 - Then lag the S -curve by the time of duration of the new unit hydrograph in this case, 1 -hr.
 - Multiply the resulting ordinate values by the ratio D/D' where D is the original duration and D' is the desired duration. D/D = 2/1 = 2.

Time	2-Hr UH										
									Lagged	Difference	1-Hr UH
(hr)	(cfs)							S-Curve	S-Curve	(cfs)	(cfs)
0	0							0		0	0
1	33							33	0	33	66
2	100	0						100	33	67	134
3	200	33						233	100	133	266
4	400	100	0					500	233	267	534
5	500	200	33					733	500	233	466
6	433	400	100	0				933	733	200	400
7	367	500	200	33				1100	933	167	334
8	300	433	400	100	0			1233	1100	133	266
9	233	367	500	200	33			1333	1233	100	200
10	167	300	433	400	100	0		1400	1333	67	134
11	100	233	367	500	200	33		1433	1400	33	66
12	33	167	300	433	400	100	0	1433	1433	0	0
13	0	100	233	367	500	200	33	1433	1433	0	

Performing the process in reverse, we can verify our solution:

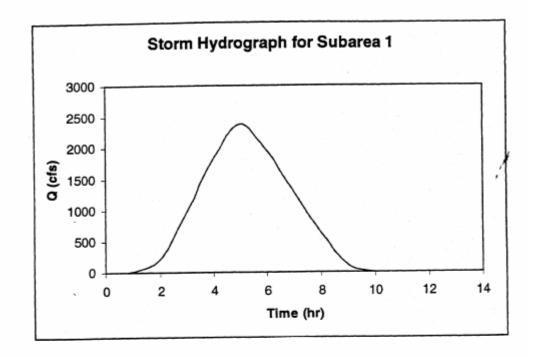
Note; $D/D' = \frac{1}{2}$ for the reverse process.

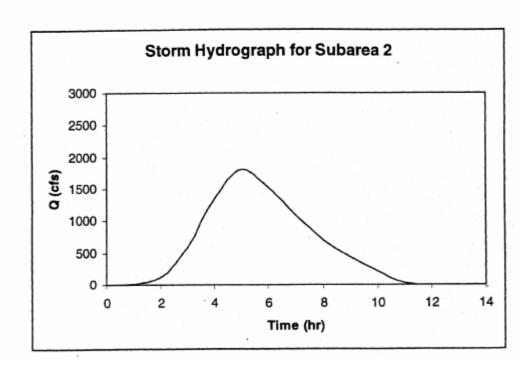
Ti	ime	1-Hr UH								Lagged	Difference	2-Hr IIH
	hr)	(cfs)							S-Curve	S-Curve	(cfs)	(cfs)
	0	0							0		0	0
1	1	66	0						66		66	33
1 .	2	134	66	0					200	0	200	100
	3	266	134	66	0				466	66	400	200
	4	534	266	134	66	0			1000	200	800	400
	5	466	534	266	134	66	0		1466	466	1000	500
1	6	400	466	534	266	134	66	0	1866	1000	866	433
	7	334	400	466	534	266	134	66	2200	1466	734	367
1 .	8	266	334	400	466	534	266	134	 2466	1866	600	300
1	9	200	266	334	400	466	534	266	 2666	2200	466	233
1	0	134	200	266	334	400	466	534	 2800	2466	334	167
1	1	66				334			2866	2666	200	100
1	2	0	66			266			2866	2800	66	33
1	3	0		66		200			2866	2866	0	0

This 2 - hr unit hydrograph is the same as given.

2.19. Develop storm hydrographs from UHs of subarea 1 and 2 for the given rainfall and infiltration.

Time (hr)	0	1	2	3	4	5	6	7	8	9
UH ₁ (cfs)	0	200	400	600	450	300	150	0		
UH ₂ (cfs)	0	100	300	450	350	250	150	100	50	0


Time Interval (hr)	Gross Rainfall (in/hr)	Infiltration Capacity (in/hr)	Rainfall Excess (in/hr)
0-1	0.5	0.4	0.1
1-2	1.1	0.2	0.9
2-3	3	0.2	2.8
3-4	0.9	0.2	0.7


So $P_N = [0.1, 0.9, 2.8, 0.7]$

Using the convolution equation, we calculate the storm hydrograph for subareas 1 and 2.

Time	UH1	P1*UH1	P2*UH1	P3*UH1	P4*UH1	Q1
(hr)		(cfs)	(cfs)	(cfs)	(cfs)	(cfs)
0	0	0				0
1	200	20	0			20
2	400	40	180	0		220
3	600	60	360	560	0	980
4	450	45	540	1120	140	1845
5	300	30	405	1680	280	2395
6	150	15	270	1260	420	1965
7	0	0	135	840	315	1290
8			0	420	210	630
9				0	105	105
10					0	0

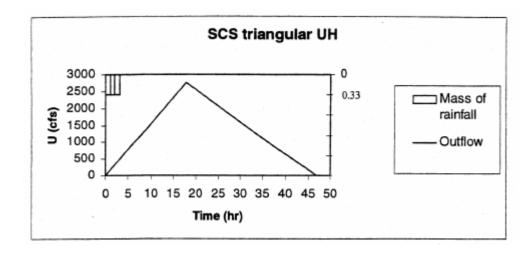
Time	UH2	P1*UH2	P2*UH2	P3*UH2	P4*UH2	Q2
(hr)		(cfs)	(cfs)	(cfs)	(cfs)	(cfs)
0	0	0				0
1	100	10	0			10
2	300	30	90	0		120
3	450	45	270	280	0	595
4	350	35	405	840	70	1350
5	250	25	315	1260	210	1810
6	150	15 .	225	980	315	1535
7	100	10	135	700	245	1090
8	50	5	90	420	175	690
9	0.	0	45	280	105	430
10			0	140	70	210
11				0	35	35
12					0	0

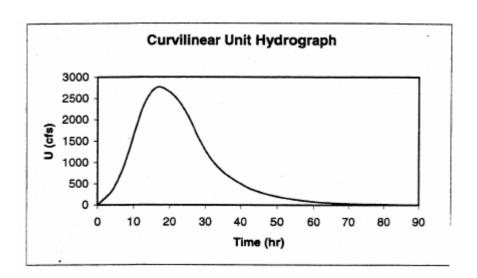
2.23. Sketch the SCS triangular and curvilinear UHs and the mass curve for a 100 mi² watershed which is 60% good condition meadow and 40% good cover forest land. The watershed consists of 70% soil group C and 30% soil group A. The average slope is 100 ft/mi, the rainfall duration is 3 hr, and the length to divide is 18 mi.

	Soil group		CN
Good	C	0.6*0.7= 0.42	71
condition meadow	A	0.6*0.3= 0.18	30
Good cover	C	0.4*0.7= 0.28	70
forest land	Α	0.4*0.3= 0.12	25

The weighted CN is: $0.42 \cdot 71 + 0.18 \cdot 30 + 0.28 \cdot 70 + 0.12 \cdot 25 = 57.82 \approx 58$

I = 18 mi = 18 mi • 5280 ft/mi = 95, 040 ft


The slope is 100 ft/mi => y = (100 ft/mi) (1 mi/5280 ft) (100%) = 1.9 %


$$S = (1000/CN) - 10 = (1000/58) - 10 = 7.24$$
 in

$$t_{\rm p} = (1^{0.8} \cdot (s+1)^{0.7}/1900 y^{1/2}) = (95,040^{0.8} (7.24+1)^{0.7}/1900 \cdot \sqrt{1.9}) = 16.05 \text{ hr}$$

$$T_R = D/2 + t_p = 1.5 + 16.05 = 17.55 \text{ hr}$$

$$Q_P = (484 \cdot A/T_R) = (484 \cdot 100/17,55) = 2757.83$$

2.24. For a 45 mi² watershed with $C_t = 2.2$, L = 15 mi, $L_c = 7$ mi, and $C_p = 0.5$, find t_p , Q_p , T_b , and D. Plot the resulting Snyder UH.

$$t_p = C_t (L \cdot L_c)^{0.3} = 2.2 \cdot (15 \cdot 7)^{0.3} = 8.9 \text{ hr}$$

$$Q_p = (640 \cdot 0.5 \cdot 45/8.9) = 1618 \text{ cfs}$$

$$T_D = 4 \cdot t_p = 4 \cdot 8.9 = 35.6 \text{ hr}$$

$$D = t_p / 55 = 1.6 \text{ hr}$$


$$W_{75} = 440 (Q_p/A)^{-1.08} = 440 \cdot (1618/45)^{-1.08} = 9.2 (3.1 \text{ before } Q_p, 6.1 \text{ after } Q_p)$$

$$W_{50} = 770 \; (Q_p/A)^{-1.08} = 770 \; (1618/45)^{-1.08} = 16.1 \; (5.4 \; before \; Q_p, \; 10.7 \; after \; Q_p)$$

The time of Q_p is = 8.9 + (1.6/2) = 9.7 hr

At
$$t = 9.7 - 3.1 = 6.6$$
 hr and $t = 15.8$ hr, $Q = 1213.5$ cfs

At
$$t = 9.7 - 5.4 = 4.3$$
 hr and $t = 9.7 + 10.7 = 20.4$ hr, $Q = 809$ cfs

