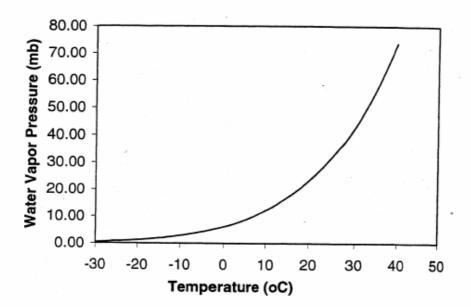

CIVL 3066 Engineering Hydrology Spring 2009

Solution : Assignment Number 1

1.6. Mud Creek has the watershed boundaries shown in Fig. P1.6. There are six rain gages in and near the watershed, and the amount of rainfall at each one during a storm is given in the accompanying table. Using the Thiessen method and a scale of 1 in. = 10 mi, determine the mean rainfall of the given storm.

Gage	Area (mi ¹)	Area (%)	Rainfall (cm)	Weighted Rainfall (cm)
				garage standard (cm)
_1	55.6	5	5.5	0.275
2	266.7	23.5	4.5	1.058
3	466.7	41.2	4	1.648
4	200	17.6	6.2	1.091
5	144.4	12.7	7	0.889
6	0	0	2.1	0
-				
SUM	1133.4	100		4.961


1.7. (cont.)

a) Saturated samples of air: T = 10° C, P = 20 mb

$$T = 10^{\circ} C$$
, $P = 30 \text{ mb}$

Unsaturated samples of air: T = 10°C, P = 10 mb

$$T = 20^{\circ}C$$
, $P = 20 \text{ mb}$

b)
$$A = (T = 30^{\circ}C, P = 25 \text{ mb})$$

$$B = (T = 30^{\circ}C, P = 30 \text{ mb})$$

i) Saturation Vapor Pressure is a function of temperature.

For both samples A & B, $T = 30^{\circ}C$

So
$$e_{sa} = e_{sb} = 42.41 \text{ mb}$$

ii) Dew point is a measure of the water vapor pressure.

For sample A,
$$e_a = 25 \text{ mb}$$
 $\longrightarrow T_d = 21.14^{\circ}\text{C}$

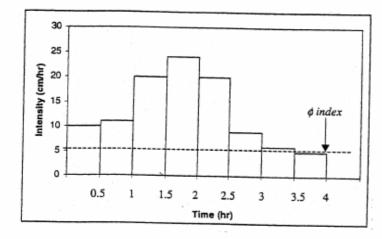
For sample B,
$$e_b = 30 \text{ mb} \longrightarrow T_d = 24.14^{\circ}\text{C}$$

iii) Relative humidity is the ratio of the actual vapor pressure to saturation vapor pressure

1.7 (cont.)

Sample A:
$$(25/42.41) \cdot 100 = 59\%$$

c) In 15°C, both samples have become saturated:


Their relative humidity is 100%.

After condensation begins, the temperature and the dew point are the same.

So,
$$T = T_d = 15^{\circ}C$$

1.12. (cont.)

a) The hyetograph ordinates are found by dividing the incremental rainfall by the time interval

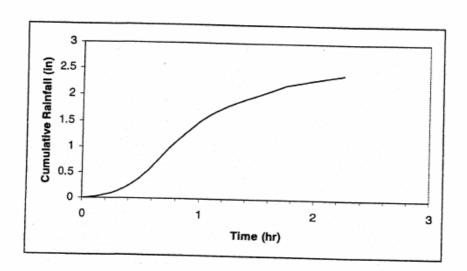
Time	Rainfall Intensity
(hr)	(cm/hr)
0 - 0.5	10
0.5 - 1	11
1 - 1.5	20
1.5 - 2	24
2 - 2.5	20
2.5 - 3	9
3 - 3.5	6
3.5 - 4	5
4 - 4.5	0

b) The total volume of rainfall is found by summing the incremental rainfall.

Volume = 52.5 cm over the watershed

c)
$$(10 - \phi) \bullet 0.5 + (11 - \phi) \bullet 0.5 + (20 - \phi) 0.5 + (24 - \phi) \bullet 0.5 + (20 - \phi) \bullet 0.5 + (20 - \phi) \bullet 0.5 + (9 - \phi) \bullet 0.5 + (6 - \phi) \bullet 0.5 + (5 - \phi) \bullet 0.5 = 30.5$$

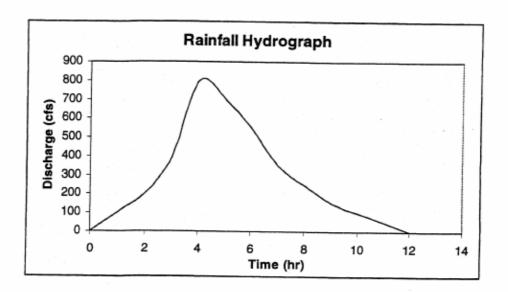
$$==>(10-\phi)+(11-\phi)+(20-\phi)+(24-\phi)+(20-\phi)+(9-\phi)+(6-\phi)+(5-\phi)=61$$


TRIAL AND ERROR

Assume
$$\phi = 5 = 5 + 6 + 15 + 19 + 15 + 4 + 1 = 65 > 61$$

Assume
$$\phi = 5.57 \Rightarrow 4.45 + 5.43 + 14.43 + 18.43 + 14.43 + 3.43 + 0.43 = 61.01$$

So ϕ index = 5.57 cm/hr


Time	Cumulative Rainfall
(hr)	(in)
0	0
0.25	0.1
0.5	0.4
0.75	1
1	1.5
1.25	1.8
1.5	2
1.75	2.2
2	2.3
2.25	2.4

1.13. (cont.)

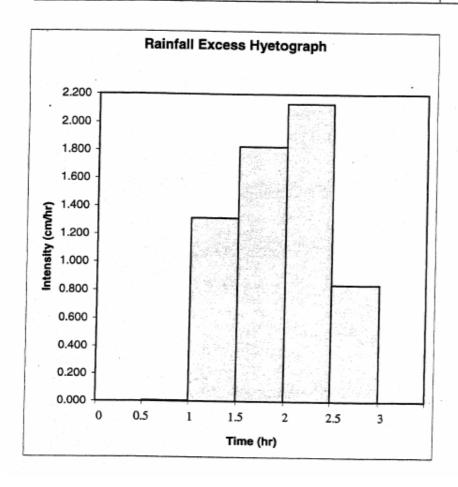
Time	Gross Rainfall
(hr)	Intensity (in/hr)
0 - 0.25	(0.1-0)/0.25 = 0.4
0.25 - 0.5	(0.4-0.1)/0.25 = 1.2
0.5 -0.75	2.4
0.75 - 1	2
1 - 1.25	1.2
1.25 -1.5	0.8
1.5 - 1.75	0.8
1.75 - 2	0.4
2 -2.2.5	0.4

1.14. If the gross rainfall of problem 1.13 falls over a watershed with area of 1600 acres, find the volume that was left to infiltration (assume evaporation can be neglected) based on the volume under the hydrograph.

P_{NET} = <u>Direct Runoff (area under hydrograph)</u> Area of Watershed

Direct Runoff
$$\approx 0 + 100 + 200 + 400 + 800 + 700 + 550 + 350 + 250 + 150 + 100 + 50 + 0$$

= 3650 cfs -hr ~3650 ac - in.


$$P_{NET} = \frac{3650 \text{ ac- in}}{1600 \text{ ac}} = 2.28 \text{ in}.$$

Volume of Infiltration = (2.4 - 2.28) in. = 0.12 in over the watershed

1.21. Using the rainfall below and a Horton infiltration curve with the parameters $k = 0.1 \text{ hr}^{-1}$, $f_c = 0.5 \text{ cm/hr}$, and $f_o = 0.7 \text{ cm/hr}$, determine and graph the excess rainfall that would occur. Assume that the initial loss for the watershed is 0.5 cm, calculate the excess rainfall as an average over half-hour intervals, and refer to Example 6.1 for guidance.

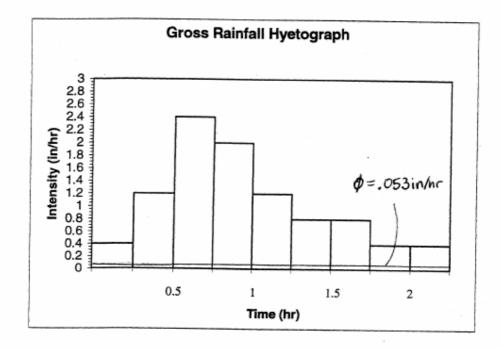
The volume of rainfall for the first half hour is $1 \cdot \frac{1}{2} = 0.5$ cm. This will fill the depression storage of the watershed. Thus infiltration begins at 30 min.

Time		Infiltration Capacity	Average Infiltration	Rainfall
Interval	Rainfall	at the start of interval	Capacity	Excess
(hr)	(cm/hr)	(cm/hr)	(cm/hr)	(cm/hr)
0-0.5	1			0.000
0.5-1	0.7	0.700	0.695	0.005
1-1.5	2	0.690	0.686	1.314
1.5-2	2.5	0.681	0.677	1.823
2-2.5	2.8	0.672	0.668	2.132
2.5-3	1.5	0.664	0.660	0.840
3-3.5	0.5	0.656	0.652	0.000

1.29. Compute the φ index for the rainfall of problem 1.13 using the results from problem 1.14 and plot the rainfall excess hyetograph.

$$P_{NET} = 2.28$$
 in

$$2.28 = [(0.4 - \phi) + (1.2 - \phi) + (2.4 - \phi) + (2.4 - \phi) + (1.2 - \phi) + (0.8 - \phi) + (0.8 + \phi) + (0.4 - \phi) + (0.4 - \phi)] \cdot 0.25$$


$$\Rightarrow 9.12 = [(0.4 - \phi) + (1.2 - \phi) + (2.4 - \phi) + (2.4 - \phi) + (1.2 - \phi) + (0.8 - \phi) + (0.8 - \phi) + (0.4 - \phi) + (0.4 - \phi)]$$
 (Equation 1)

Trial and Error Method

For
$$\phi = 0.1$$
: $0.3 + 1.1 + 2.3 + 1.9 + 1.1 + 0.7 + 0.7 + 0.3 + 0.3 =$
= $8.7 < 9.12 \Rightarrow \phi < 0.1$

Since ϕ is less than 0.4 in/hr (where 0.4 in/hr is the smallest rainfall intensity,) we can solve Equation 1 as a regular equation:

$$9.12 = 9.6 - 9\phi$$
 $\phi = 0.053 \text{ in/hr}$

1.30. A sandy loam has an initial moisture content of 0.18, hydraulic conductivity of 7.8 mm/hr, and average capillary suction of 100 mm. Rain falls at 2.9 cm/hr and the final moisture content is measured to be 0.45. Plot the infiltration rate vs. the infiltration volume, using the Green and Ampt method of infiltration.

$$\theta_i = 0.18$$
 , $\theta_f = 0.45$

 $K_s = 78 \text{ mm/hr}$

 $S_{av} = 100mm = -\Psi_F$ Avg Capillary Suction

Rain Intensity = 2.9 cm/hr (For 6 hours)

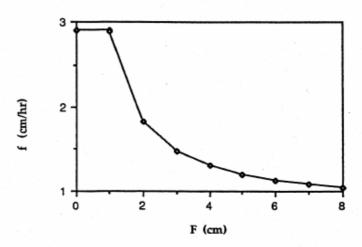
$$M_D = \theta_f - \theta_i = 0.45 - 0.18 = 0.27$$

$$F_s = (S_{av} - M_D) / ((I/K_s) - 1) = 100 \cdot (0.27) / (2.9/0.78 - 1) \text{ mm/ (cm/cm)} = 9.93 \text{ mm}$$

Until 9.93 mm has infiltrated, the rate of infiltration equals the rainfall intensity = 2.9 cm/ hr

$$t = (1/2.9) \cdot (.993) = 0.34 \text{ hr.}$$

After Saturation:


$$f = K_s (1 + S_{av} \bullet (M_d/F))$$

= 0.78 ((1 +	10 • ((0.27)	/F))

= 0.78 (1	+(2.7/F)

F (cm)	F (cm/hr)
1	2.89
2	1.83
3	1.48
4	1.31
5	1.20
6	1.13
7	1.08
8	1.04

Infiltration Rate vs. Infiltration Volume

1.31. Use the parameters given to graph the infiltration rate vs. the infiltration volume for the same storm for both types of soil. Prepare a graph using the Green-Ampt method, comparing all the curves calculated with both the lower- and upper-bound porosity parameters. The rainfall intensity of the storm was 1.5 cm/hr for several hours and the initial moisture content of all the soils was 0.15.

SOIL	POROSITY	CAPILLARY	HYDRAULIC
		SUCTION	CONDUCTIVITY
		(cm)	(cm/hr)
Silt loam	0.42-0.58	16.75	0.65
Sandy clay	0.37-0.49	23.95	0.10

$$\theta_i = 0.15$$
 $S_{AV} = -\Psi_F$ Capillary Suction

Rain Intensity = 1.5 cm/hr

	SL	SC
Ks	0.65	0.10 cm/hr
SAV	16.75	23.95 cm
θ_f	0.42- 0.58	0.37- 0.49

$$M_d = \theta_f - \theta_i$$

-Silty Loam: (SL)

$$F_S = (S_{AV} \bullet M_d) / ((I/K_s) - 1) = (16.75 \bullet M_d) / ((1.5 \text{ cm/hr} / 0.65 \text{ cm/hr}) - 1) = 16.75 \bullet M_d / 1.308$$

With a Low Porosity,

$$M_d = 0.42 - 0.15 = 0.27$$

$$F_s = 3.46$$
 cm

Saturation Time = Fs/I = 3.46 cm/ 1.5 cm/hr = 2.31 hr

With a High Porosity:

$$M_d = 0.58 - 0.15 = 0.43$$

$$F_s = 5.51$$
 cm

Saturation Time = 5.51 cm/1.5 cm/hr = 3.67 hr

1.31. (cont.)

Sandy Clay:

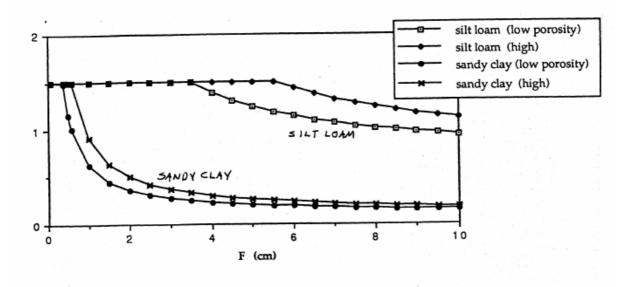
$$F_s = (S_{AV} \bullet M_d) / ((I / K_s) - 1) = (23.95 \bullet M_d) / ((1.5 / 0.1) - 1) = 23.95 \bullet M_d / 14$$

With a Low Porosity,

$$M_d = 0.37 - 0.15 = 0.22$$

$$F_{\text{s}} = 0.38 \text{ cm}$$

Saturation Time = 0.38 cm / 1.5 cm/hr = 0.25 hr


With a High Porosity,

$$M_d = 0.49 - 0.15 = 0.34$$

$$F_s = 0.58 \text{ cm}$$

Saturation Time = 0.58 cm/ 1.5 cm/hr = 0.39 hr

Plot the Infiltration Volume –vs.– The Infiltration Rate: $f = k_s (1 + S_{av} \bullet (M_d/F))$

