Flood Routing

> Ahmad Sana
> Department of Civil and Architectural Engineering Sultan Qaboos University
> Sultanate of Oman
> sana@squ.edu.om
> http://ahmadsana.tripod.com/

Hydrologic and Hydraulic Routing

Fig. 4-1
Reservoir Concepts
(a) Reservoir Storage
(b) Inflow and outflow
(c) Storage

(b)

Example 4-1
Determine the average storage for each one-day period? What is the maximum storage?

Time distribution of Storage

Example 4-3:

Muskingum method

Given: Inflow, Initial outflow, K and x .

Determine: Outflow

$$
\begin{aligned}
& Q_{2}=C_{0} I_{2}+C_{1} I_{1}+C_{2} Q_{1} \\
& C_{0}=\frac{-K x+0.5 \Delta t}{D}
\end{aligned}
$$

1. Calculate $\mathrm{D}, \mathrm{C}_{0}, \mathrm{C}_{1}$ and
C_{2}. $C_{1}=\frac{k x+0.5 \Delta t}{D}$
2. Check if $\mathrm{C}_{0}+\mathrm{C}_{1}+\mathrm{C}_{2}=1$
$C_{2}=\frac{K-K x-0.5 \Delta t}{D}$
3. Calculate all Q values one by one.
$D=K-K x+0.5 \Delta t$

Example 4-4	Table E4-4.			
	Time (days)	Avg. Inflow (cfs)	Avg. Oufflow (cfs)	Storage (cfs-days)
Determination of storage coefficients	1	59	42	17
	2	93	70	40
	3	129	76	94
	4	205	142	157
	5	210	183	184
	6	234	185	233
	7	325	213	345
	8	554	293	606
	9	627	397	836
	10	526	487	875
	11	432	533	774
	12	400	487	687
	13	388	446	629
	14	270	400	499
	15	162	360	301
	16	124	230	195
	17	102	140	157
	18	81	115	123
	19	60	93	90
	20	51	71	70

Tutorial:

1. Problem 4.1
2. Problem 4.2

Storage-Indication method

The continuity equation can be written as:

$$
\frac{1}{2}\left(I_{1}+I_{2}\right)-\frac{1}{2}\left(Q_{1}+Q_{2}\right)=\frac{S_{2}-S_{1}}{\Delta t}
$$

In general form it can be re-written as:

$$
\left(I_{n}+I_{n+1}\right)+\left(\frac{2 S_{n}}{\Delta t}-Q_{n}\right)=\left(\frac{2 S_{n+1}}{\Delta t}+Q_{n+1}\right)
$$

Storage-Indication method

$$
\left(I_{n}+I_{n+1}\right)+\left(\frac{2 S_{n}}{\Delta t}-Q_{n}\right)=\left(\frac{2 S_{n+1}}{\Delta t}+Q_{n+1}\right)
$$

Given: Inflow, Initial Outflow, Storage-Discharge relationship for reservoir

Determine: Outflow

1. Establish relationship between Q and $2 S / D t+Q$ using water surface elevation in the reservoir, h.
2. Calculate left-hand-side for the above equation
3. Use the relationship of step 1 to determine Q at next time step
4. Repeat until you get Q for all time steps.

Example 4-5: Storage-Indication method

Example 4-5: Storage-Indication method

Tutorial:

1. Problem 4.4
2. Problem 4.21

Hydraulic river routing

Continuity Equation

$$
\frac{\partial A}{\partial t}+\frac{\partial Q}{\partial x}=q
$$

Momentum Equation

$$
\begin{aligned}
& \frac{\partial v}{\partial t}+v \frac{\partial v}{x}+\frac{g}{A} \frac{\partial(\bar{y} A)}{\partial x}+\frac{v q}{A}=g\left(S_{0}-S_{f}\right) \\
& S_{f}=S_{0}-\frac{\partial y}{\partial x}-\frac{v}{g} \frac{\partial v}{\partial x}-\frac{1}{g} \frac{\partial v}{\partial t}
\end{aligned}
$$

Table 4-1. Forms of the Momentum Equation

Type of Flow	Momentum Equation
Kinematic wave (steady uniform)	$S_{f}=S_{0}$
Diffusion (noninertia) model	$S_{f}=S_{0}-\partial y / \partial x$
Steady nonuniform	$S_{f}=S_{0}-\partial y / \partial x-(v / g) \partial v / \partial x$
Unsteady nonuniform	$S_{f}=S_{0}-\partial y / \partial x-(v / g) \partial v / \partial x-(1 / g) \partial v / \partial t$

