CIVL 5076 Coastal Engineering
 Fall 2006
 Mid Term Examination

Total Marks: 100
Time allowed: 90 minutes

Note: Attempt all questions

Question

1. Sultanate of Oman is interested in generating electricity by using wave energy on Omani Coast. The waves on the selected site approach normal to the shore with deep water wave height of 0.9 m and 6 sec period. A single unit of equipment that converts the wave power into electrical power has a length of 5 m along shore and efficiency of 60 percent when installed at a water depth of 5 m . How many units would be required to produce approximately 500 kW of electricity? State all the assumptions made in solving this problem.
2. Waves reach a shore with non-refracted deep water height of 1 m and a period of 5 sec . If the beach slope is $1: 8$, what is the wave runup on an ideal beach with smooth impermeable surface? What is the runup if the tetra pods are placed on the beach?
3. For deep water condition, the particle displacements in x and y direction are given as $\xi=\frac{H}{2} e^{k y} \sin (k x-\sigma t) \quad \varepsilon=\frac{H}{2} e^{k y} \cos (k x-\sigma t)$, respectively.
(a) Show that the particles in deep water move along a circular path. The equation for a circle at origin is given as $x^{2}+y^{2}=R^{2}$, where R is the radius of the circle.
(b) Show that the radius of the circle in which particles move in deep water is negligibly small at a distance of $L_{0} / 2$ from the surface. Assume the wave height as 1 m .
4. Consider a breakwater as shown in the following figure. The region between the breakwater and the shoreline has a constant depth of 12 m . An 8-sec, 2-m high wave is incident at the tip of the breakwater from the direction shown in the figure.
(a) What is the wave height at point X shown in the figure?
(b) What is the wave height at point Y (junction of both the breakwater arms)?

Clearly write down all the assumptions made.

The following formulae and graphs are provided.
$\eta=\frac{H}{2} \cos (k x-\sigma t), \quad \phi=\frac{H}{2} \frac{g \cosh k(d+y)}{\sigma \cosh k d} \sin (k x-\sigma t)$
$\sigma^{2}=g k \tanh (k d), \quad C=\sqrt{\frac{g L}{2 \pi} \tanh \left(2 \pi \frac{d}{L}\right)}=\frac{g T}{2 \pi} \tanh \left(2 \pi \frac{d}{L}\right)$
$L=\frac{g T^{2}}{2 \pi} \tanh (k d), \quad L_{0}=\frac{g T^{2}}{2 \pi}$
$u=\left(\frac{\pi H}{T}\right) \frac{\cosh k(d+y)}{\sinh (k d)} \cos (k x-\sigma t), \quad v=\left(\frac{\pi H}{T}\right) \frac{\sinh k(d+y)}{\sinh (k d)} \sin (k x-\sigma t)$
$\zeta=\left(\frac{H}{2}\right) \frac{\cosh k(d+y)}{\sinh (k d)} \sin (k x-\sigma t), \quad \varepsilon=\left(\frac{H}{2}\right) \frac{\sinh k(d+y)}{\sinh (k d)} \cos (k x-\sigma t)$
$p=-\rho g y+\left(\frac{\rho g H}{2}\right) \frac{\cosh k(d+y)}{\cosh (k d)} \cos (k x-\sigma t)$
$E=\frac{\rho g H^{2} L}{8}, \quad P=\frac{n E}{T}, \quad n=\frac{1}{2}\left(1+\frac{2 k d}{\sinh (2 k d)}\right)$
$\frac{H_{1}}{H_{2}}=\sqrt{\frac{n_{2} L_{2}}{n_{1} L_{1}}} K_{R}, \quad\left(\frac{H}{L}\right)_{\max }=\frac{1}{7} \tanh (k d), \quad K_{R}=\sqrt{\frac{\cos \alpha_{0}}{\cos \alpha}}$
$\frac{\sin \alpha}{L}=\frac{\sin \alpha_{0}}{L_{0}}, \quad F_{D}=\frac{C_{D}}{2} \rho_{f} A u|u|, \quad F_{L}=\frac{C_{L}}{2} \rho_{f} A u|u|$
$F_{I}=C_{M} \rho_{f} \forall \frac{\partial u}{\partial t}, \quad \sin \theta_{p}=\frac{2 C_{M} \forall \sinh k d}{C_{D} A H \cosh k(d+y)}$

TABLE 3.1. WAVE DIFFRACTION COEFFICIENTS, K_{D},
AS A FUNCTION (WIEGEL, 1962)

r / L	β (Degrees)												
	0	15	30	45	60	75	90	105	120	135	150	165	180
$\theta=15^{\circ}$													
1/2	0.49	0.79	0.83	0.90	0.97	1.01	1.03	1.02	1.01	0.99	0.99	1.00	1.00
1	0.38	0.73	0.83	0.95	1.04	1.04	0.99	0.98	1.01	1.01	1.00	1.00	1.00
2	0.21	0.68	0.86	1.05	1.03	0.97	1.02	0.99	1.00	1.00	1.00	1.00	1.00
5	0.13	0.63	0.99	1.04	1.03	1.02	0.99	0.99	1.00	1.01	1.00	1.00	1.00
$\begin{array}{llllllllllllllllllll}10 & 0.35 & 0.58 & 1.10 & 1.05 & 0.98 & 0.99 & 1.01 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00\end{array}$													
$1 / 2$	0.61	0.63	0.68	0.76	0.87	0.97	1.03	1.05	1.03	1.01	0.99	0.95	1.00
	0.50	0.53	0.63	0.78	0.95	1.06	1.05	0.98	0.98	1.01	1.01	0.97	1.00
2	0.40	0.44	0.59	0.84	1.07	1.03	0.96	1.02	0.98	1.01	0.99	0.95	1.00
5	0.27	0.32	0.55	1.00	1.04	1.04	1.02	0.99	0.99	1.00	1.01	0.97	1.00
$\begin{array}{llllllllllllllllllll}10 & 0.20 & 0.24 & 0.54 & 1.12 & 1.06 & 0.97 & 0.99 & 1.01 & 1.00 & 1.00 & 1.00 & 0.98 & 1.00\end{array}$													
1/2	0.49	0.50	0.55	0.63	0.73	0.85	0.96	1.04	1.06	1.04	1.00	0.99	1.00
1	0.38	0.40	0.47	0.59	0.76	0.95	1.07	1.06	0.98	0.97	1.01	1.01	1.00
2	0.29	0.31	0.39	0.56	0.83	1.08	1.04	0.96	1.03	0.98	1.01	1.00	1.00
5	0.18	0.20	0.29	0.54	1.01	1.04	1.05	1.03	1.00	0.99	1.01	1.00	1.00
10	0.13	0.15	0.22	0.53	1.13	1.07	0.96	0.98	1.02	0.99	1.00	1.00	1.00
$\theta=60^{\circ}$													
1/2	0.40	0.41	0.45	0.52	0.60	0.72	0.85	1.13	1.04	1.06	1.03	1.01	1.00
1	0.31	0.32	0.36	0.44	0.57	0.75	0.96	1.08	1.06	0.98	0.98	1.01	1.00
2	0.22	0.23	0.28	0.37	0.55	0.83	1.08	1.04	0.96	1.03	0.98	1.01	1.00
5	0.14	0.15	0.18	0.28	0.53	1.01	1.04	1.05	1.03	0.99	0.99	1.00	1.00
$\theta=75^{\circ}$													
1/2	0.34	0.35	0.38	0.42	0.50	0.59	0.71	0.85	0.97	1.04	1.05	1.02	1.00
1	0.25	0.26	0.29	0.34	0.43	0.56	0.75	0.95	1.02	1.06	0.98	0.98	1.00
2	0.18	0.19	0.22	0.26	0.36	0.54	0.83	1.09	1.04	0.96	1.03	0.99	1.00
5	0.12	0.12	0.13	0.17	0.27	0.52	1.01	1.04	1.05	1.03	0.99	0.99	1.00
2. $\quad 8=90^{\circ}$													
1/2	0.31	0.31	0.33	0.36	0.41	0.49	0.59	0.71	0.85	0.96	1.03	1.03	1.00
,	0.22	0.23	0.24	0.28	0.33	0.42	0.56	0.75	0.96	1.07	1.05	0.99	1.00
2	0.16	0.16	0.18	0.20	0.26	0.35	0.54	0.69	1.08	1.04	0.96	1.02	1.00
5	0.10	0.10	0.11	0.13	0.16	0.27	0.53	1.01	1.04	1.05	1.02	0.99	1.00
10	0.07	0.07	0.08	0.09	0.13	0.20	0.52	1.14	1.07	0.96	0.99	1.01	1.00

OF INCIDENT WAVE DIRECTION θ, AND POSITION, r / L AND β

	β (Degrees)												
H/L	0	15	30	45	60	75	90	105	120	135	150	165	180

$\begin{array}{llllllllllllll}1 / 2 & 0.28 & 0.28 & 0.29 & 0.32 & 0.35 & 0.41 & 0.49 & 0.59 & 0.72 & 0.85 & 0.97 & 1.01 & 1.00\end{array}$ $\begin{array}{cccccccccccccc}1 / 2 & 0.28 & 0.28 & 0.29 & 0.32 & 0.35 & 0.41 & 0.49 & 0.59 & 0.72 & 0.85 & 0.97 & 1.01 & 1.00 \\ \text { I } & 0.20 & 0.20 & 0.24 & 0.23 & 0.27 & 0.33 & 0.42 & 0.56 & 0.75 & 0.95 & 1.06 & 1.04 & 1.00\end{array}$ $\begin{array}{llllllllllllll}\text { I } & 0.20 & 0.20 & 0.24 & 0.23 & 0.27 & 0.33 & 0.42 & 0.56 & 0.75 & 0.95 & 1.06 & 1.04 & 1.00 \\ 2 & 0.14 & 0.14 & 0.13 & 0.17 & 0.20 & 0.25 & 0.35 & 0.54 & 0.83 & 1.08 & 1.03 & 0.97 & 1.00\end{array}$ $\begin{array}{llllllllllllll}2 & 0.14 & 0.14 & 0.13 & 0.17 & 0.20 & 0.25 & 0.35 & 0.54 & 0.83 & 1.08 & 1.03 & 0.97 & 1.00 \\ 5 & 0.09 & 0.09 & 0.10 & 0.11 & 0.13 & 0.17 & 0.27 & 0.52 & 1.02 & 1.04 & 1.04 & 1.02 & 1.00\end{array}$ $\begin{array}{cccccccccccccc}5 & 0.09 & 0.09 & 0.10 & 0.11 & 0.13 & 0.17 & 0.27 & 0.52 & 1.02 & 1.04 & 1.04 & 1.02 & 1.00 \\ 10 & 0.07 & 0.06 & 0.08 & 0.08 & 0.09 & 0.12 & 0.20 & 0.52 & 1.14 & 1.07 & 0.97 & 0.99 & 1.00\end{array}$ $0.12 \quad 0.20$
$\theta=120^{\circ}$
$\begin{array}{lllllllllllll}1 / 2 & 0.25 & 0.26 & 0.27 & 0.28 & 0.31 & \frac{\delta=35}{0.35} & 0.41 & 0.50 & 0.60 & 0.73 & 0.87 & 0.97 \\ 1.00\end{array}$ $\begin{array}{cccccccccccccc}1 / 2 & 0.25 & 0.26 & 0.27 & 0.28 & 0.31 & 0.35 & 0.41 & 0.50 & 0.60 & 0.73 & 0.87 & 0.97 & 1.00 \\ 1 & 0.18 & 0.19 & 0.19 & 0.21 & 0.23 & 0.27 & 0.33 & 0.43 & 0.57 & 0.76 & 0.95 & 1.04 & 1.00 \\ 1 & 0.13 & 0.13 & 0.14 & 0.14 & 0.17 & 0.20 & 0.26 & 0.16 & 0.55 & 0.83 & 1.07 & 1.03 & 1.00\end{array}$ $\begin{array}{llllllllllllll}1 & 0.18 & 0.19 & 0.19 & 0.21 & 0.23 & 0.27 & 0.33 & 0.43 & 0.57 & 0.76 & 0.95 & 1.04 & 1.00 \\ 2 & 0.13 & 0.13 & 0.14 & 0.14 & 0.17 & 0.20 & 0.26 & 0.16 & 0.55 & 0.83 & 1.07 & 1.03 & 1.00\end{array}$ $\begin{array}{llllllllllllll}2 & 0.13 & 0.13 & 0.14 & 0.14 & 0.17 & 0.20 & 0.26 & 0.16 & 0.55 & 0.83 & 1.07 & 1.03 & 1.00 \\ 5 & 0.08 & 0.08 & 0.08 & 0.09 & 0.11 & 0.13 & 0.16 & 0.27 & 0.53 & 1.01 & 1.04 & 1.03 & 1.00 \\ 10 & 0.06 & 0.06 & 0.06 & 0.07 & 0.07 & 0.09 & 0.13 & 0.20 & 0.52 & 1.13 & 106 & 0.98 & 100\end{array}$ $\begin{array}{llllllllllllll}10 & 0.06 & 0.06 & 0.06 & 0.07 & 0.07 & 0.09 & 0.13 & 0.20 & 0.52 & 1.13 & 1.06 & 0.98 & 1.00\end{array}$
$\begin{array}{llllllllllllll}1 / 2 & 0.24 & 0.24 & 0.25 & 0.26 & 0.28 & 0.32 & 0.36 & 0.42 & 0.52 & 0.63 & 0.76 & 0.90 & 1.0\end{array}$ $\begin{array}{cccccccccccccc}1 / 2 & 0.24 & 0.24 & 0.25 \\ 1 & 0.18 & 0.17 & 0.18 & 0.19 & 0.21 & 0.23 & 0.28 & 0.34 & 0.44 & 0.59 & 0.78 & 0.95 & 1.00\end{array}$ $\begin{array}{llllllllllllll}2 & 0.12 & 0.12 & 0.13 & 0.14 & 0.14 & 0.17 & 0.20 & 0.26 & 0.37 & 0.56 & 0.84 & 1.05 & 1.00\end{array}$ $\begin{array}{llllllllllllll}5 & 0.08 & 0.07 & 0.08 & 0.08 & 0.09 & 0.11 & 0.13 & 0.17 & 0.28 & 0.54 & 1.00 & 1.04 & 1.00\end{array}$ $\begin{array}{llllllllllllll}10 & 0.05 & 0.06 & 0.06 & 0.06 & 0.07 & 0.08 & 0.09 & 0.13 & 0.21 & 0.53 & 1.12 & 1.05 & 1.00\end{array}$
$\begin{array}{llllllllllllll}2 & 0.23 & 0.23 & 0.24 & 0.25 & 0.27 & 0.29 & 0.33 & 0.38 & 0.45 & 0.55 & 0.68 & 0.83 & 1.00\end{array}$ $\begin{array}{llllllllllllll}1 & 0.16 & 0.17 & 0.17 & 0.18 & 0.19 & 0.22 & 0.24 & 0.29 & 0.36 & 0.47 & 0.63 & 0.83 & 1.00\end{array}$ $\begin{array}{llllllllllllll}2 & 0.12 & 0.12 & 0.12 & 0.13 & 0.14 & 0.15 & 0.18 & 0.22 & 0.28 & 0.39 & 0.59 & 0.86 & 1.00 \\ 5 & 0.07 & 0.07 & 0.00 & 0.09 & 0.09 & 0.10 & 0.11 & 0.13 & 0.18 & 0.29 & 0.55 & 0.99 & 1.00\end{array}$ $\begin{array}{cccccccccccccc}5 & 0.07 & 0.07 & 0.08 & 0.08 & 0.08 & 0.1 & 0.11 & 0.13 & 0.18 & 0.29 & 0.55 & 0.99 & 1.00 \\ 10 & 0.05 & 0.05 & 0.05 & 0.06 & 0.06 & 0.07 & 0.08 & 0.10 & 0.13 & 0.22 & 0.54 & 1.10 & 1.00\end{array}$ $\theta=165^{\circ}$
$\begin{array}{llllllllllllll}1 / 2 & 0.23 & 0.23 & 0.23 & 0.24 & 0.26 & 0.28 & 0.31 & 0.35 & 0.41 & 0.50 & 0.63 & 0.79 & 1.00\end{array}$ $\begin{array}{llllllllllllll}1 & 0.16 & 0.16 & 0.17 & 0.17 & 0.19 & 0.20 & 0.23 & 0.26 & 0.32 & 0.40 & 0.53 & 0.73 & 1.00\end{array}$ $\begin{array}{llllllllllllll}2 & 0.11 & 0.11 & 0.12 & 0.12 & 0.13 & 0.14 & 0.16 & 0.19 & 0.23 & 0.31 & 0.44 & 0.68 & 1.00\end{array}$ $\begin{array}{llllllllllllll}5 & 0.07 & 0.07 & 0.07 & 0.07 & 0.08 & 0.09 & 0.10 & 0.12 & 0.15 & 0.20 & 0.32 & 0.63 & 1.00\end{array}$ $\begin{array}{llllllllllllll}10 & 0.05 & 0.05 & 0.05 & 0.06 & 0.06 & 0.06 & 0.07 & 0.08 & 0.11 & 0.11 & 0.21 & 0.58 & 1.00\end{array}$ $\theta=180^{\circ}$

$\begin{array}{llllllllllllll}1 / 2 & 0.20 & 0.25 & 0.23 & 0.24 & 0.25 & 0.28 & 0.31 & 0.34 & 0.40 & 0.49 & 0.61 & 0.78 & 1.00\end{array}$ $\begin{array}{llllllllllllll}1 & 0.10 & 0.17 & 0.16 & 0.18 & 0.18 & 0.23 & 0.22 & 0.25 & 0.31 & 0.38 & 0.50 & 0.70 & 1.00\end{array}$ $\begin{array}{llllllllllllll}2 & 0.02 & 0.09 & 0.12 & 0.12 & 0.13 & 0.18 & 0.16 & 0.18 & 0.22 & 0.29 & 0.40 & 0.60 & 1.00\end{array}$ $\begin{array}{lllllllllllllll}5 & 0.02 & 0.06 & 0.07 & 0.07 & 0.07 & 0.08 & 0.10 & 0.12 & 0.14 & 0.18 & 0.27 & 0.46 & 1.00\end{array}$	10	0.01	0.05	0.05	0.04	0.06	0.07	0.07	0.08	0.10	0.13	0.20	0.36	1.00

