SULTAN QABOOS UNIVERSITY

Department of Civil and Architectural Engineering B.Eng. Examinations, Fall Semester 2006

COASTAL ENGINEERING	CIVL 5076
December 25, 2006	09:00-12:00
The following is provided for this examination	
 Answer booklet Design aids: formulae, graphs and charts. 	
Candidates are permitted to bring into the examination room	
Calculator (programmable or non-programmable).	

Instructions to candidates:

- 1. Attempt all questions.
- 2. The paper consists of FIVE questions.
- 3. The allowed time is three hours.
- 4. Assume water density as **1030 kg/m³** wherever required.

NAME:

ID #:

Date:

Question	1	2	3	4	5	Total
Marks						

1. Consider the L-shaped breakwater protecting a harbor region 6m deep, as shown in the following figure. A record of incident waves is shown in the table below. Which wave condition results in the highest wave at point X behind the breakwater?

[30%]

CIVL 5076 Coastal Engineering

2. A 2.4m high wave with a period of 8 sec in deep water is propagating toward the shore without refracting. A water particle velocity of 0.25 m/s on the bottom is required to initiate movement of the seabed particles. At what water depth the particles at the seabed will start moving as the wave shoals? [20%]

3. The bottom profile at a project site on Al-Batinah coast is shown as follows. If a tsunami wave with height 2m and period 30minutes reaches Station A at 7:00 a.m.

(a) V	What time will it arrive at Station B?	[5%]
(b) V	What will be the tsunami height at Station B?.	[10%]

4. If the significant wave height in a wave record is 4m and the significant wave period is 7.5 sec. Using the properties of Raleigh distribution answer the following:

(a) How many waves would be smaller than 5m height in a 30	minute long wave
record?	[10%]
(b) Estimate the average wave height for this record?	[2%]
(c) Estimate the maximum wave height in a wave record of 1 he	our duration?
	[3%]

CIVL 5076 Coastal Engineering

5. The head of a rubble mound breakwater is to be constructed at Sohar port with a face slope of 1:2. The design water depth at this location is 7 m and the bottom slope fronting the structure is 1:30. The deep water significant wave height is 4m and a significant period of 8 sec.

(a) What weight tetrapod armor units (specific gravity=2.4) are required for the head of breakwater? Note: Check if the waves are breaking or nonbreaking. [10%]
(b) What should be the crest width according to specifications? [5%]
(c) What will be the armor unit placement density? [5%]

The following formulae and graphs are provided.

$$\begin{split} \eta &= \frac{H}{2}\cos(kx - \sigma \tau) \qquad \phi = \frac{H}{2}\frac{g\cosh k(d + y)}{\sigma\cosh kd}\sin(kx - \sigma \tau) \\ \sigma^2 &= gk \tanh(kd) \qquad C = \sqrt{\frac{gL}{2\pi}\tanh(2\pi\frac{d}{L})} = \frac{gT}{2\pi}\tanh(2\pi\frac{d}{L}) \\ L &= \frac{gT^2}{2\pi}\tanh(kd) \qquad L_0 = \frac{gT^2}{2\pi} \qquad W = \frac{w_r H_i^3}{K_D(S_r - 1)^3\cot\theta} \qquad t_T = \sum\frac{\Delta S}{\sqrt{gd_s}} \\ u &= \left(\frac{\pi H}{T}\right)\frac{\cosh k(d + y)}{\sinh(kd)}\cos(kx - \sigma \tau) \qquad v = \left(\frac{\pi H}{T}\right)\frac{\sinh k(d + y)}{\sinh(kd)}\sin(kx - \sigma \tau) \\ \zeta &= \left(\frac{H}{2}\right)\frac{\cosh k(d + y)}{\sinh(kd)}\sin(kx - \sigma \tau) \qquad \varepsilon = \left(\frac{H}{2}\right)\frac{\sinh k(d + y)}{\sinh(kd)}\cos(kx - \sigma \tau) \\ p &= -\rho gy + \left(\frac{\rho gH}{2}\right)\frac{\cosh k(d + y)}{\cosh(kd)}\cos(kx - \sigma \tau) \qquad H_{ms} = 0.706H_s = 1.129H_{100} \\ E &= \frac{\rho gH^2 L}{8} \qquad P = \frac{nE}{T} \qquad n = \frac{1}{2}\left(1 + \frac{2kd}{\sinh(2kd)}\right) \\ p(H) &= \frac{2H}{(H_{ms})^2}e^{-(H/H_{ms})^2} \qquad H_{1}_2 = \sqrt{\frac{n_2L_2}{n_1L_1}}K_R, \qquad \left(\frac{H}{L}\right)_{max} = \frac{1}{7}\tanh(kd) \\ K_R &= \sqrt{\frac{\cos\alpha_0}{\cos\alpha}} \qquad H_{ms} = \sqrt{\sum\frac{H_i^2}{N}} \qquad H_{max} = 0.707H_s\sqrt{\ln N} \\ B &= nk_{\Delta}\left(\frac{W}{w_r}\right)^{1/3} \qquad r = Ank_{\Delta}\left(1 - \frac{P}{100}\right)\left(\frac{w_r}{W}\right)^{2/3} \\ K_s &= \frac{4\pi d_i/L}{\sinh(4\pi d_i/L}}\sin(2\pi B/L)^2 \end{split}$$

TABLE 3.1.	WAVE	DIFFRAC	CTION	COEFFICIENTS,	K _D ,
	AS A FU	NCTION	(WIEC	EL, 1962)	

OF INCIDENT WAVE DIRECTION θ , AND POSITION, r/L and β

	[β (D	egrees)													β (D	egrees	1					
r/L	0	15	30	45	60	75	90	105	120	135	150	165	180	r/L	0	15	30	45	60	75	90	105	120	135	150	165	180
						θ=	15°							2						θ-	105°						
1/2	0.49	0.79	0.83	0.90	0.97	1.01	1.03	1.02	1.01	0.99	0.99	1.00	1.00	4/2	0.28	0.28	0.29	0.32	0.35	0.41	0.49	0.59	0.72	0.85	0.97	1.01	1.00
í	0.38	0.73	0.83	0.95	1.04	1.04	0.99	0.98	1.01	1.01	1.00	1.00	1.00	1	0.20	0.20	0.24	0.23	0.27	0.33	0.42	0.56	0.75	0.95	1.06	1.04	1.00
2	0.21	0.68	0.86	1.05	1.03	0.97	1.02	0.99	1.00	1.00	1.00	1.00	1.00	2	0.14	0.14	0.13	0.17	0.20	0.25	0.35	0.54	0.83	1.08	1.03	0.97	1.00
5	0.13	0.63	0.99	1.04	1.03	1.02	0.99	0.99	1.00	1.01	1.00	1.00	1.00	5	0.09	0.09	0.10	0.11	0.13	0.17	0.27	0.52	1.02	1.04	1.04	1.02	1.00
10	0.35	0.58	1.10	1.05	0,98	0.99	1.01	1.00	1.00	1.00	1.00	1.00	1.00	10	0.07	0.06	80.0	0.08	0.09	0.12	0.20	0.52	1.14	1.07	0.97	0.99	1.00
						θ=	30°													θ=	120°						
1/2	0.61	0.63	0.68	0.76	0.87	0.97	1.03	1.05	1.03	1.01	0.99	0.95	1.00	1/2	0.25	0.26	0.27	0.28	0.31	0.35	0.41	0.50	0.60	0.73	0.87	0.97	1.00
1	0.50	0.53	0.63	0.78	0.95	1.06	1.05	0.98	0.98	1.01	1.01	0.97	1.00	1	0,18	0.19	0.19	0.21	0.23	0.27	0.33	0.43	0.57	0.76	0.95	1.04	1.00
2	0.40	0.44	0.59	0.84	1.07	1.03	0.96	1.02	0.98	1.01	0.99	0.95	1.00	2	0.13	0.13	0.14	0.14	0.17	0.20	0.26	0.16	0.55	0.83	1.07	1.03	1.00
5	0.27	0.32	0.55	1.00	1.04	1.04	1.02	0.99	0.99	1.00	1.01	0.97	1.00	5	0.08	0.08	0.08	0.09	0.11	0.13	0.16	0.27	0.53	1.01	1.04	1.03	1.00
10	0.20	0.24	0.54	1.12	1.06	0.97	0.99	1.01	1.00	1.00	1.00	0.98	1.00	10	0.06	0.06	0.06	0.07	0.07	0.09	0.13	0.20	0.52	1.13	1.06	0.98	1.00
						θ-	45°										0 OF			#=	135*	~ ~~					
1/2	0.49	0.50	0.55	0.63	0.73	0.85	0.96	1.04	1.06	1.04	1.00	0.99	1.00	1/2	0.24	0.24	0.25	0.26	0.28	0.32	0.36	0.42	0.52	0.63	0.76	0.90	1.00
1	0.38	0.40	0.47	0.59	0.76	0.95	1.07	1.06	0.98	0.97	1.01	1.01	1.00	. 1	0.18	0.17	0.18	0.19	0.21	0.23	0.28	0.34	0.44	0.59	0.78	0.95	1.00
2	0.29	0.31	0.39	0.56	0.83	1.08	1.04	0.96	1.03	0.98	1.01	1.00	1.00	2	0.12	0.12	0.13	0.14	0.14	0.17	0.20	0.26	0.37	0.56	0.84	1.05	1.00
5	0.18	0.20	0.29	0.54	1.01	1.04	1.05	1.03	1.00	0.99	1.01	1.00	1.00	5	0.08	0.07	0.08	0.08	0.09	0.11	0.13	0.17	0.28	0.54	1.00	1.04	1.00
10	0.13	0.15	0.22	0.53	1.13	1.07	0.96	0.98	1.02	0.99	1.00	1.00	1.00	10	0.05	0.06	0.06	0.06	0.07	0.08	0.09	0.13	0.21	0.53	1.12	1.05	1.00
						<i>θ</i> =	60°							. /0	0.00			0.05	0.07	g ==	120-	0.00	o 45		0.00	0.00	
1/2	0.40	0.41	0.45	0.52	0.60	0.72	0.85	1.13	1.04	1.06	1.03	1.01	1.00	1/2	0.23	0.23	0.24	0.25	0.27	0.29	0.33	0.38	0.45	0.55	0.08	0.83	1.00
1	0.31	0.32	0.36	0.44	0.57	0.75	0.96	1.08	1.06	0.98	0.98	1.01	1.00	1	0.10	0.17	0.17	0.10	0.19	0.22	0.24	0.29	0.30	0.47	0.03	0.85	1.00
2	0.22	0.23	0.28	0.37	0.55	0.83	1.08	1.04	0.96	1.03	0.98	1.01	1.00	2	0.12	0.12	0.12	0.13	0.14	0.15	0.18	0.22	0.28	0.39	0.59	08.0	1.00
5	0.14	0.15	0.18	0.28	0.53	1.01	1.04	1.05	1.03	0.99	0.99	1.00	1.00	10	0.07	0.07	0.00	0.00	0.00	0.10	0.11	0.13	0.10	0.29	0.55	1 10	1.00
10	0.10	0.11	0.13	0.21	0.52	1.14	1.07	0.96	0.98	1.01	1.00	1.00	1.00	10	0.05	0.00	0.05	0.00	0.00	0.07 A_	1659	0.10	0.13	0.22	0.54	1.10	1.00
. /0	0.94	A 95	0.90			0.50	0.71	0.05	0.07	1.04	1.05	1.00	1.00	1/2	0.73	0.22	0.23	0.24	0.26	0.28	0.81	0.85	0.41	0.50	0.63	0 70	1.00
1/2	0.32	0.33	0.30	0.42	0.30	0.59	0.71	0.00	1.00	1.02	1.00	1.02	1.00		0.16	0.16	0.17	0.17	0.10	0.20	0.29	0.35	0.32	0.00	0.03	0.73	1.00
1	0.25	0.20	0.29	0.32	0.95	0.50	0.75	1.00	1.02	1.00	1.02	0.90	1.00		0 11	0.10	0.12	0.12	0.13	0.14	0.16	0.10	0.23	0.10	0.33	0.68	1.00
	0.10	0.19	0.22	0.20	0.30	0.54	1.01	1.09	1.04	1.09	1.03	0.99	1.00	ŝ	0.07	0.07	0.07	0.07	0.08	0.09	0.10	0.12	0.15	0.01	0.32	0.63	1 00
10	0.12	0.12	0.13	0.17	0.27	0.52	1.01	1.02	1.05	1.05	1.01	1.00	1.00.	10	0.05	0.05	0.05	0.06	0.06	0.06	0.07	0.08	0.11	0.11	0.21	0.58	1.00
10	0.00	0.00	0.10	Q.15	0.20	θ=	90°	1.07	0.50	0.50	1.01	1.00	1.00							θ=	180°		••••	••••	•••••	0.00	
1/2	0.31	0.31	0.33	0.36	0.41	0.49	0.59	0.71	0.85	0.96	1.03	1.03	1.00	1/2	0.20	0.25	0.23	0.24	0.25	0.28	0.31	0.34	0.40	0.49	0.61	0.78	1.00
1	0.22	0.23	0.24	0.28	0.33	0.42	0.56	0.75	0.96	1.07	1.05	0.99	1.00	1	0.10	0.17	0.16	0.18	0.18	0.23	0.22	0.25	0.31	0.38	0.50	0.70	1.00
2	0.16	0.16	0.18	0.20	0.26	0.35	0.54	0.69	1.08	1.04	0.96	1.02	1.00	2	0.02	0.09	0.12	0.12	0.13	0.18	0.16	0.18	0.22	0.29	0.40	0.60	1.00
5	0.10	0.10	0.11	0.13	0.16	0.27	0.53	1.01	1.04	1.05	1.02	0.99	1.00	5	0.02	0.06	0.07	0.07	0.07	0.08	0.10	0.12	0.14	0.18	0.27	0.46	1.00
10	0.07	0.07	0.08	0.09	0.13	0.20	0.52	1.14	1.07	0.96	0.99	1.01	1.00	10	0.01	0.05	0.05	0.04	0.06	0.07	0.07	0.08	0.10	0.13	0.20	0.36	1.00

Kp. Values for Use in Determining Armor Unit Weight (Source: EM 1110-2-2004)											
	Varaca		Structur	Trunk(7)		Structure Head					
Armor Units	n ⁽²⁾	Placement	Breaking Wave	Nonbreaking Wave	Breaking Wave	Nonbreaking Wave	Slope cot 0				
Quarrystone											
Smooth rounded	2	Random	1.2(1)	2.4	1.1(1)	1.9	1.5-3.0(8)				
Smooth rounded	>3	Random	1.6(1)	3.2(1)	1.4(1)	2.3(1)	1.5-3.0(8)				
Rough angular	1	Random ⁽³⁾	(3)	2.9(1)	(3)	2.3(1)	1.5-3.0(8)				
Rough angular	2	Random	2.0	4.0	1.9 ⁽¹⁾ 1.6 ⁽¹⁾ 1.3	3.2 2.8 2.3	1.5 2.0 3.0				
Rough angular	>3	Random	2.2(1)	4.5(1)	2.1(1)	4.2(1)	1.5-3.0 ⁽⁸⁾				
Rough angular	2	Special ⁽⁴⁾	5.8	7.0	5.3(1)	6.4	1.5-3.0(8)				
Parallelepiped ⁽⁹⁾	2	Special	7.0 - 20.0	8.5 - 24.0(1)			1.0-3.0				
Tetrapod and Quadripod	2	Random	7.0	8.0	5.0 ⁽¹⁾ 4.5 ⁽¹⁾ 3.5 ⁽¹⁾	6.0 5.5 4.0	1.5 2.0 3.0				
Tribar	2	Random	9.0(1)	10.0	8.3 ⁽¹⁾ 7.8 ⁽¹⁾ 6.0	8.3(1) 9.0 7.8(1) 8.5 6.0 6.5					
Dolos	2	Random	15.0 ⁽⁶⁾	31.0(6)	8.0 ⁽¹⁾ 7.0	16.0 ⁽¹⁾ 14.0 ⁽¹⁾	2.0 ⁽⁵⁾ 3.0				
Modified cube	2	Random	6.5(1)	7.5		5.0(1)	1.5-3.0 ⁽⁸⁾				
Hexapod	2	Random	8.0(1)	9.5	5.0(1)	7.0(1)	1.5-3.0 ⁽⁸⁾				
Toskane	2	Random	11.0 ⁽¹⁾ 22.0				1.5-3.0 ⁽⁸⁾				
Tribar	1	Uniform	12.0	15.0	7.5(1)	9.5(1)	1.5-3.0(8)				
Quarrystone - graded angular riprap	-	Random	2.2	2.2 2.5							
(1) <u>CAUTION</u> : The	se K _D	values are unsu	pported and ar	e provided only fo	or preliminary	design.					
(2) n is the number	of unit	s comprising th	e thickness of t	he armor layer.		•					
(3) The use of single layer of quarrystone armor units is not recommended for structures subject to breaking waves, and only under special conditions for structures subject to nonbreaking waves. When it is used, the stone should be carefully placed.											
(4) Special placeme	nt with	long axis of st	one placed perp	endicular to struc	ture face.						
(5) Stability of dold	sse on i	slopes steeper t	han 1 on 2 shou	ild be substantiat	ed by site-spe	cific tests.					
(6) Refers to no-da Kp 50 per	(6) Refers to no-damage criteria (<5 percent displacement, rocking, etc.); if no rocking (<2 percent) is desired, reduce Kp 50 percent (Zwamborn and Van Niekerk, 1982).										
(7) Applicable to sl	opes rai	nging from 1 or	n 1.5 to 1 on 5.								
(8) Until more infor Some arm	mation or unit	is available, th s tested on a st	ne use of KD sho ructure head in	ould be limited to dicate a KD-slop	slopes rangin e dependence.	g from 1 on 1.5 to	1 on 3.				
(9) Parallelepiped- dimension	haped (Mark	stone: long slat le and Davidso	n, 1979).	h long dimension	approximately	three times the	hortest				

Table A-1

Table A-2

Layer Coefficient and Porosity for Various Armor Units (Source: SPM)											
Armor Unit	n	Placement	Layer Coefficient	Porosity %							
Quarrystone (smooth)	2	Random	1.02	38							
Quarrystone (rough)	2	Random	1.00	37							
Quarrystone (rough)	>3	Random	1.00	40							
Quarrystone (parallelepiped)	2	Special	-	27							
Cube (modified)	2	Random	1.10	47							
Tetrapod	2	Random	1.04	50							
Quadripod	2	Random	0.95	49							
Hexipod	2	Random	1.15	47							
Tribar	2	Random	1.02	54							
Dolos	2	Random	0.94	56							
Toskane	2	Random	1.03	52							
Tribar	1	Uniform	1.13	47							
Quarrystone	Graded	Random	-	37							