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Analysis of Pipe Networks 
 

Applications: Water supply system, Pressure sewerage system, Water treatment plant 

Theory: 

1. Continuity equation 2211 VAVA   

2. Energy equation 
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Friction factor f is a function of Reynolds number (RN) and relative roughness ( Dks /

). It can be found from Moody’s diagram or Colebrook equation: 
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Jain's approximation :  
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Table 1. Equivalent sand roughness, sk  in new pipes, (Moody, 1944) 

Material Equivalent sand roughness, sk  (mm) 

Riveted steel 0.9-9.0 

Concrete 0.3-3.0 

Ductile and cast iron 0.26 

Galvanized iron 0.15 

Asphalt-dipped ductile/cast iron 0.12 

Commercial steel or wrought iron 0.046 

Copper or brass tubing 0.0015 

Glass, plastic (PVC) 0  
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Example: Water from a treatment plant is pumped into a distribution system at a rate 

of 4.38 m
3
/s, a pressure of 480kPa, and a temperature of 20

o
C. The diameter of the 

pipe is 750mm and is made of ductile iron. 

(a) Calculate the friction factor by Colebrook equation 

(b) Estimate the pressure 200m downstream of the treatment plant if the pipeline 

remains horizontal.  

Solution:  

016.0f  2702 p kPa 

 

Designing a pipe for a given flowrate and head loss 

1. Assume f 

2. Calculate diameter from rearranged Darcy-Weisbach equation: 
5/1

2

28










 f

gh

LQ
D

L   

3. Calculate Reynolds number, 


VD
RN   

4. Calculate relative roughness, Dks /  

5. Use RN and ks/D to calculate f from Colebrook equation. 

6. Using new value of f repeat the procedure until new f agrees with the old one. 

 

Example: A galvanized iron service pipe from a water main is required to deliver 

200 L/s during a fire. If the length of the service pipe is 35m and the head loss in the 

pipe is not to exceed 50m, calculate the minimum pipe diameter that can be used. 

Solution:  D= 136 mm 

 

Three-reservoir problem 

 

 

 

 

 

 

 

 

 

 

 

Unknowns: 321 ,, VVV  

Equations: One continuity and two energy equations 
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Other friction formulas: 

Hazen-Williams formula (SI units)  
54.063.085.0 SRCV H  

Manning’s formula (SI units)   
2/13/21

SR
n

V   

 

Table 2. Pipe roughness coefficients 

Pipe material CH n 

Ductile and cast iron: 

  New, unlined 

  Old, unlined 

  Cement lined and seal coated 

 

 

130 

80 

120 

 

0.013 

- 

0.013 

Steel: 

  Welded and seamless 

  Riveted 

 

120 

110 

 

- 

0.015 

Concrete 110 0.015 

Vitrified clay - 0.013 

Polyvinyl chloride (PVC) - 0.009 

 

The head loss can be expressed as: 

x

L KQh   

Manning’s formula: 2x  Hazen-Williams formula: 85.1x  

 

Darcy-Weisbach equation: 75.1x  (smooth pipe) to 2x  (rough pipe) 

 

 

Design of water distribution system 

 

A municipal water distribution system is used to deliver water to the consumer. 

Water is withdrawn from along the pipes in a pipe network system, for computational 

purposes all demands on the system are assumed to occur at the junction nodes. 

 

Pressure is the main concern in a water distribution system. At no time should the 

water pressure in the system be so low that contaminated groundwater could enter the 

system at points of leakage. 

 

The total water demand at each node is estimated from residential, industrial and 

commercial water demands at that node. The fire flow is added to account for 

emergency water demand. 
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Water Demand 

 

Total water demand at a node is equal to the average water demand per capita 

multiplied by the population served by that node. 

 

The population may be estimated by any of the available models of population 

growth. These models use the previously available population data for future 

projections. 

For example, according to Arithmetic model: 

ktPtP  0)(  

P(t) is the population at time t and P0 is the reference population. 

Similarly a higher order polynomial function can be obtained as follows: 

 32

0)( ctbtatPtP  

and the population can be estimated at any time t. 

 

Example: You are in the process of designing a water-supply system for a town, and 

the design life of your system is to end in the year 2020. The population in the town 

has been measured every 10 years since 1920 and is given below. Estimate the 

population in the town using graphical extension and arithmetic growth projection. 

 

Year Population 

1920 125,000 

1930 150,000 

1940 150,000 

1950 185,000 

1960 185,000 

1970 210,000 

1980 280,000 

1990 320,000 

Solution: 
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From the graph, if the line is extended to year 2020, we get, the population as: 

000,440P  

By regression on the data for 1970 to 1990, we get the following expression: 

ttP 550060000)(   

where, t is the time in years starting from year 1920. So, for year 2020, t= 100, and 

we get the population,   

000,490P  

 

Variations in demand 

Maximum daily demand, Maximum hourly demand 

Table 3. Typical demand factors 

Condition Range of demand factors Typical value 

Daily average in maximum month 1.1-1.5 1.2 

Daily average in maximum week 1.2-1.6 1.4 

Maximum daily demand 1.5-3.0 1.8 

Maximum hourly demand 2.0-4.0 3.25 

Minimum hourly demand 0.2-0.6 0.3 
 

Fire demand 

 

Insurance Services Office, Inc. (ISO, 1980) formula: 

iiii PXOCNFF )(   

where, iNFF  is needed fire flow at location i, iC  is the construction factor based on 

size and type of construction of the building, iO  is the occupancy factor reflecting the 

kinds of material stored in the building (value range from 0.75 to 1.25), and iPX )(   

 is the sum of the exposure factor and communication factor that reflects the 

proximity and exposure of other buildings (value range from 1.0 to 1.75). 

ii AFC 220min)/L(   

iA is the effective floor area in square meters, typically equal to the area of the largest 

floor in the building plus 50% of the area of all other floors, F is a coefficient based 

on the class of construction. The maximum value of iC  and typical F values are 

given below: 

Class of Construction Description F Max. Ci(L/min) 

1 Frame 1.5 30,000 

2 Joisted masonry 1.0 30,000 

3 Noncombustible 0.8 23,000 

4 Masonry, noncombustible 0.8 23,000 

5 Modified fire resistive 0.6 23,000 
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6 Fire resistive 0.6 23,000 

Occupancy factors: 

Combustibility class  Examples Oi 

C-1 Noncombustible Steel or concrete products storage 0.75 

C-2 Limited combustible Apartments, mosques, offices 0.85 

C-3 Combustible Department stores, supermarkets 1.0 

C-4 Free-burning Auditoriums, warehouses 1.15 

C-5 Rapid burning Paint shops, upholstering shops 1.25 

 

Average value of iPX )(  is 1.4. The NFF should be rounded to the nearest 

1000L/min if less than 9000 L/min and to the nearest 2000L/min if greater than 

9000L/min. 

Required fire flow durations: 

Required fire flow (L/min) Duration (h) 

<9000 2 

11000-13000 3 

15000-17000 4 

19000-21000 5 

23000-26000 6 

26000-30000 7 

30000-34000 8 

34000-38000 9 

38000-45000 10 

 

Example: Estimate the flowrate and volume of water required to provide adequate 

fire protection to a 10-story noncombustible building with an effective floor area of 

8000m
2
. 

Solution: NFF=17000L/min Volume= 4080m
3
. 

Design periods and capacities in water supply systems: 

Component Design period(year) Design capacity 

Sources of supply: 

  River 

  Wellfield 

  Reservoir 

 

Indefinite 

10-25 

25-50 

 

Maximum daily demand 

Maximum daily demand 

Average annual demand 

Pumps*: 

  Low-lift 

  High-lift 

 

10 

10 

 

Maximum daily demand 

Maximum hourly demand 

Water treatment plant 10-15 Maximum daily demand 

Service reservoir 20-25 Working storage + fire 

demand + emergency 

storage 

Pipes 25-50 Greater of maximum daily 

demand + fire flow and  

maximum hourly demand 
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*: One reserve unit should be kept for the pumps. 

Example: A metropolitan area has a population of 130000 people with an average 

daily demand of 600 L/d/person. If the needed fire flow is 20000 L/min, estimate, (a) 

the design capacities for the wellfield and the water-treatment plant, (b) the duration 

that the fire flow must be sustained and the volume of water that must be kept in the 

service reservoir in case of a fire and (c) the design capacity of the main supply 

pipeline to the distribution system. 

Solution: (a) 1.62 m
3
/s (b) 5940 m

3
 (c) 2.92 m

3
/s 

 

Operating criteria for water supply systems 

Primary functions of a water-supply system 

1. Meet the demand while maintaining acceptable pressures 

2. Supply water for fire without affecting the water supply to the rest of the 

system 

3. Provide sufficient level of redundancy to serve during emergency conditions 

 

Minimum acceptable pressure: 

Under normal conditions = 240 to 410 kPa 

During fire or emergency = >140 kPa 

 

Maximum pressure (not strict) : 650kPa. 

 

Storage facilities 

1. 20% to 25% of the maximum daily demand volume 

2. Fire demand 

3. Emergency storage (minimum storage equal to average daily system denmand) 

4. Minimum height of water in the elevated storage tank based on minimum 

piezometric head in the service area 

5. Normal operating range 4.5 to 6.0 m. 
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Example: A service reservoir is to be designed for a water-supply system serving 

250,000 people with an average demand of 600L/d/capita and a needed fire flow of 

37000 L/min. Estimate the required volume of service storage. 

 

Solution: 237600m
3
. 

 

Example: A water-supply system is to be designed in an area where the minimum 

allowable pressure in the distribution system is 300kPa. A hydraulic analysis of the 

distribution network under average daily demand conditions indicates that the head 

loss between the low-pressure service location, which has a pipeline elevation of 

5.4m and the location of the elevated storage tank is 10m. Under maximum hourly 

demand conditions, the head loss between the low-pressure service location and the 

elevated storage tank is 12m. Determine the normal operating range for the water 

stored in the elevated tank. 

 

Solution: From 48m to 46 m. 

 

Pipe Network Systems 
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1 fpjeq NNNN
 

Neq= Number of equations required 

Nj= number of junction nodes 

Nl= number of loops 

Nf= number of Fixed Grade Nodes (e.g. elevated reservoirs) 

 

In the above figure 

91226 eqN  
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Conditions to satisfy: 

1. The algebraic sum of the pressure drops around any closed loop must be zero 

2. The flow entering a junction must equal the flow leaving it. 

 

Hardy Cross Method 

 aQQ  

Q Actual flow rate 

aQ Assumed flow rate 

 Correction 
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For small values of correction 

01   x

a

x

a KxQKQ  

 







1x

a

x

a

xKQ

KQ

 

Example: Determine the discharge in each line and the pressure at each junction node 

for the pipe network shown below using Hardy Cross method. The pipe and junction 

data is given in the table below. 
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P-
7 

P-6 

P-5 

P-
4 

P-3 

P-2 

P-
1 

A 

B 

J-1 

J-2 

J-3 

J-4 

C4 C1 

C3 

C2 

 
 

Line Nodes Length(m) Diameter(cm) f K(s
2
/m

5
) 

1 A-1 300 30 0.015 153.0 

2 1-2 250 20 0.019 1226.5 

3 1-3 200 20 0.019 981.2 

4 2-3 220 15 0.02 4787.6 

5 2-4 180 20 0.019 883.1 

6 3-4 250 20 0.019 1226.5 

7 4-B 270 25 0.017 388.4 

 

Node Elevation(m) Demand(L/s) 

A 126 - 

B 123 - 

1 96 56 

2 99 112 

3 93 28 

4 90 85 

 

From Darcy-Weisbach formula, 
2KQhL  , where 

52

8

gD

fL
K
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HGL elevation at the end of pipe = HGL elevation at the beginning-Head loss 

 

.)..( ElGElHGLp   
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P-
7 

P-6 

P-5 

P-
4 

P-3 

P-2 

P-
1 

J-1 

A 

J-2 

B 

J-3 

J-4 

 
 

Pipe Discharge(L/s) Head loss (m) 

1 167.9 5.61 

2 58.4 4.78 

3 53.5 3.22 

4 16.4 1.55 

5 37.2 1.42 

6 9.1 0.13 

7 113.1 5.97 

 

Node Elevation(m) HGL (m) p(kPa) 

A 126   

1 96 120.39 239.3 

2 99 115.61 163.0 

3 93 117.17 237.1 

4 90 117.03 265.2 

B 123   
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Linear Method 

Hardy Cross method requires an initial estimate of the flow that should be close to the 

final solution. 

Linear method is a very stable method in which all the equations are solved 

simultaneously. 

Each nonlinear head loss term is linearized using first two terms in Taylor series: 

)()()( qQ
q

f
qfQf 




  

q= flow rate from previous iteration 

Q= unknown flow rate. 

 

So, 

')(1 DDQqQnKqKqKQ nnn  
 

where 
nn KqnDnKqD )1('1  

 

For loops with pumps, nonlinear pump characteristic equation (LHS) is replaced with 

linear equation (RHS): 

'))(2(22 EEQqQBAqHBqAqHBQAQ   

where 
2'2 AqHEBAqE   

 

Example: Write down the equations to solve the following network by linear method. 
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Solution: First of all we assume the direction of flow in each pipe. 
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P-6 

P-5 

P-4 

P-3 

P-2 

P-1 
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B 

J-1 

J-2 

J-3 

J-4 

C4 C1 

C3 

C2 

 

Continuity equations: 

 

0

0

0

0

4765

3643

2542

1321
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


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CQQQ

CQQQ

CQQQ

CQQQ

 

 

Loop equations (clockwise positive): 

 

AB zzQKQKQKQK

QKQKQK

QKQKQK







2

77
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2

22

2

11
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2

55

2

44

2

44

2

33

2

22

0

0

 

The continuity equations are already linear, so linearizing the loop equations we get: 

7752177552211

6654665544

5432443322

CDDDDzzQDQDQDQD

CDDDQDQDQD

CDDDQDQDQD

AB 





 

 

In matrix form the above equations can be written as follows: 

 

    CQA   

Where  A  is coefficient matrix and  C  is a column matrix of constants. 
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Solving for the flow rates: 

     CAQ
1

  

For the initial iteration a velocity of 1m/s may be assumed in each pipe. The 

computed flow rates (Q) become estimated flow rates (q) for the next iteration. The 

iterative process is continued until the equations converge to a solution. In other 

words when the value of    


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is within a specified limit. 

 

 


