SULTAN QABOOS UNIVERSITY

Mid-Term Examination, Spring Semester 2006

ENGINEERING HYDROLOGY

CIVL 3066

April 9, 2006

Candidates are permitted to bring into the examination room:

Calculator (programmable or non-programmable).

Instructions to candidates:

- 1. Answer all the questions
- 2. The paper consists of FOUR questions.
- 3. Maximum allowed time is 90 minutes.
- 4. Assume water density as 1000 kg/m^3 wherever required.
- 5. Assume kinematic viscosity of the water as $0.01 \text{ cm}^2/\text{s}$ wherever required.

NAME:

ID #:

Date:

Question	1	2	3	4	Total
Marks					

For a sandy loam soil, calculate the infiltration rate (cm/hr) and depth of infiltration (cm) after one hour if the effective saturation is initially 40 percent, using the Green-Ampt method. Assume continuously ponded condition. [25%]

The precipitation and streamflow for a storm are shown in the table below for a watershed having an area of 18 km^2 .

- (a) Calculate the time distribution of storage on the watershed assuming that the initial storage is zero. [15]
- (b) Compute the total depth of precipitation and the equivalent depth of streamflow occurred during the 4-hour period. [5]
- (c) How much storage remained in the watershed at the end of the period?[5]

No.	Time	Incremental	Instantaneous		
	(hr)	Precipitation	Streamflow		
		(cm)	(m^{3}/sec)		
1	0		0.71		
2	0.5	0.46	1.08		
3	1.0	1.07	8.78		
4	1.5	0.53	18.55		
5	2.0		30.01		
6	2.5		27.40		
7	3.0		23.46		
8	3.5		15.03		
9	4.0		7.68		

A rectangular open channel 10m wide and 1m deep has a slope of 0.001 and is lined with cemented rubble (n=0.025). Determine

- (a) its maximum discharge capacity, and [10]
- (b) the maximum discharge obtainable by changing the cross-sectional dimensions without changing the rectangular form of the section, the slope and the volume of excavation. [15]

Develop new functions to be used in MS-Excel for solving the following equations that require trials or successive substitution. List complete VBA programs that will return the output value using the input values given with each equation:

(a)
$$\frac{1}{\sqrt{f}} = -2\log_{10}\left[\frac{k_s}{12R} + \frac{2.5}{R_N\sqrt{f}}\right]$$

Required output: f= friction factor Input values: R= Hydraulic radius, $R_N=$ Reynolds number and $k_s=$ roughness height.

[10]

(b)
$$F = Kt + \psi \Delta \theta \ln \left(1 + \frac{F}{\psi \Delta \theta}\right)$$

Required output: F= cumulative infiltration Input values: K= hydraulic conductivity, ψ =suction head and $\Delta \theta$ = change in moisture content of the soil due to infiltration. [15] The following information may be useful in solving the problems.

$$\tau = \rho v \frac{du}{dz} \qquad \tau_{turb} = \rho K_m \frac{du}{dz} \qquad \qquad \frac{u}{u^*} = \frac{1}{\kappa} \ln\left(\frac{z}{z_0}\right)$$

$$f(t) = f_c + (f_0 - f_c)e^{-kt}, \qquad F(t) = S\sqrt{t} + Kt$$

$$f(t) = \frac{1}{2}\frac{S}{\sqrt{t}} + K, \qquad F(t) - \psi\Delta\theta \ln\left(1 + \frac{F(t)}{\psi\Delta\theta}\right) = Kt$$

$$f = K\left(\frac{\psi\Delta\theta + F}{F}\right) = \frac{dF}{dt}, \qquad \Delta\theta = (1 - s_e)\theta_e$$

$$e_s = 611\exp(\frac{17.3T}{T + 237.3}), \qquad E_t = \frac{\Delta SM}{\Delta t} = \frac{\sum_{i=1}^n (\theta_i - \theta_2)\Delta S_i + I - D}{\Delta t}$$

$$Q = \frac{1}{n}AR^{2/3}S_f^{1/2}$$

TABLE 4.3.1 Green-Ampt infiltration parameters for	r various	soil cl	asses
---	-----------	---------	-------

Soil class	Porosity	Effective porosity	Wetting front soil suction	Hydraulic conductivity	
	η	θ_e	ψ (cm)	K (cm/h)	
Sand	0.437	0.417	4.95	11.78	
	(0.374-0.500)	(0.354-0.480)	(0.97 - 25.36)		
Loamy sand	0.437	0.401	6.13	.2.99	
	(0.363-0.506)	(0.329-0.473)	(1.35 - 27.94)		
Sandy Joam	0.453	0.412	11.01	1.09	
Juney round	(0.351-0.555)	(0.283-0.541)	(2.67 - 45.47)		
Loam	0.463	0.434	8.89	0.34	
Locourte	(0.375-0.551)	(0.334-0.534)	(1.33 - 59.38)		
Silt loam	0.501	0.486	16.68	0.65	
	(0.420 - 0.582)	(0.394 - 0.578)	(2.92-95.39)		
Sandy clay	0.398	0.330	21.85	0.15	
	(0.332-0.464)	(0.235-0.425)	(4.42 - 108.0)		
Clay loam	0.464	0.309	20.88	0.10	
	(0.409 - 0.519)	(0.279 - 0.501)	(4.79 - 91.10)		
Silty clay	0.471	0.432	27.30	0.10	
loam	(0.418 - 0.524)	(0.347-0.517)	(5.67-131.50)		
Sandy clay	0.430	0.321	23.90	0.06	
	(0.370 - 0.490)	(0.207 - 0.435)	(4.08 - 140.2)		
Silty clay	0.479	0.423	29.22	0.05	
	(0.425-0.533)	(0.334-0.512)	(6.13-139.4)		
Clay	0.475	0.385	31.63	0.03	
	(0.427-0.523)	(0.269-0.501)	(6.39-156.5)		

The numbers in parentheses below each parameter are one standard deviation around the parameter value given. *Source:* Rawls, Brakensiek, and Miller, 1983.