7. Unit Hydrograph (UHG)

The relationship between the excess rainfall and streamflow is developed using the UHG.

UHG is a hydrograph for a unit volume of excess rainfall for a given storm duration. For example in SI units, UHG is a hydrograph for 1 cm of rainfall on a given watershed for a given storm duration.

Three principles for UHG method

- 1. For the same duration of rainfall, the runoff duration is same irrespective of the difference in the intensity (Fig. 7.10).
- 2. The runoff ordinates are in the same proportions with the intensities of the rainfall. That is, n times as much rain in a given time will produce a hydrograph with ordinates n times as large (Fig. 7.10).
- 3. The principle of superposition is valid (Fig. 7.11)

Figure 7.10 Proportional principle of the unitgraph

Figure 7.11 Principle of superposition applied to unitgraphs

Example: The gross rainfall was 14mm for a storm of 3 hour duration on a watershed having 13.6 km² area. The ϕ index for the catchment is estimated to be 1.3 mm/h. Derive the UHG for this catchment from the direct runoff data given below:

Time(h)	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$DRO(m^3/s)$	0	1.8	6.1	8.4	6.5	5.2	4.0	3.0	2.2	1.6	1.1	0.7	0.4	0.2	0.1	0

Excess rainfall =

DRO volume =

UHG ordinates =

The UHG from multi-period storms

$$Q_{n} = \sum_{m=1}^{n \le M} P_{m} U_{n-m+1}$$

For example
$$Q_{1} = P_{1} U_{1}$$

$$Q_{2} = P_{1} U_{2} + P_{2} U_{1}$$

$$Q_{3} = P_{1} U_{3} + P_{2} U_{2} + P_{3} U_{1}$$

$$Q_{4} = P_{1} U_{4} + P_{2} U_{3} + P_{3} U_{2}$$

Application of the discrete convolution equation to the output from a linear system.

Example 7.4.1 Find the half-hour unit hydrograph using the excess rainfall hydrograph and direct runoff hydrograph given in Table 7.4.2 (these were derived in Example 5.3.1)

Time (1/2 h)	Excess rainfall (in)	Direct runoff (cfs)
1	1.06	428
2	1.93	1923
3	1.81	5297
4		9131
5		10625
6		7834
7		3921
8		1846
9		1402
10		830
11		313

$$U_{1} = \frac{Q_{1}}{P_{1}} = \frac{428}{1.06} = 404_{\text{cfs/in}}$$
$$U_{2} = \frac{Q_{2} - P_{2}U_{1}}{P_{1}} = \frac{1923 - 1.93 \times 404}{1.06} = 1079_{\text{cfs/in}}$$

$$U_{3} = \frac{Q_{3} - P_{3}U_{1} - P_{2}U_{2}}{P_{1}}$$
$$= \frac{5297 - 1.81 \times 404 - 1.93 \times 1079}{1.06} = 2343$$

The UHG is

n	1	2	3	4	5	6	7	8	9
$U_{n \text{ (cfs/in)}}$	404	1079	2343	2506	1460	453	381	274	173

Check the volume of UHG to make sure it is 1 in.

UHG Application

Baseflow = 500 cfs.

Example 7.5.1

$$Q_1 = P_1 U_1 = 2.00 \times 404 = 808 \ cfs$$

 $Q_2 = P_1 U_2 + P_2 U_1 = 2.00 \times 1079 + 3.00 \times 404 = 3370 \ cfs$
and so on.

TABLE 7.5.1Calculation of the direct runoff hydrograph and streamflow hydrograph for Example7.5.1

	Freess	Unit hydrograph ordinates (cfs/in)									100	Ca.
$\frac{\text{Time}}{(\frac{1}{2}\text{-}h)}$	Precipitation (in)	1 404	2 1079	3 2343	4 2506	5 1460	6 453	7 381	8 274	9 173	Direct runoff (cfs)	Streamflow* (cfs)
n = 1	2.00	808	140	15-11-11	1251.114		1	1			808	1209
2	3.00	1212	2158								3270	1306
3	1.00	404	3237	4686							8277	3870
4			1079	7029	5012						12 120	12 (20
5			00000	2343	7518	2020					13,120	13,620
6					2506	4380	906				12,701	13,281
7					2000	1460	1350	762			7792	8292
8						1400	1559	1142	540		3581	4081
9							433	1143	548		2144	2644
10								381	822	346	1549	2049
10									274	519	793	1293
11										173	173	673
1780	lation by I									Total	54,438	

$$V_{d} = \sum_{n=1}^{N} Q_{n} \Delta t = 54438 \times 0.5 \quad cfs.h = 54438 \times 0.5 \times 3600$$
$$= 9.8 \times 10^{7} ft^{3}$$
$$r_{d} = \frac{V_{d}}{A} = \frac{9.8 \times 10^{7}}{7.03 \times 5280^{2}} = 0.5 ft = 6 in$$

As can be observed the value of the r_d is equal to the amount of excess rainfall (6 in).

Synthetic UHG

Three types of synthetic UHG

- 1. Relating hydrograph characteristics to watershed characteristics
- 2. Based on dimensionless UHG
- 3. Based on models of watershed storage

Snyder's Synthetic UHG

Based on the study in U.S. for areas of 30 to 30,000 km²

 $t_p = \text{Basin lag}$

 $t_r = Rainfall duration$

 q_p = Peak discharge per unit drainage area (m³/s.km²)

 $W_p =$ Width of the UHG at a discharge equal to p percent of the peak discharge.

 $t_{p} = 5.5t_{r}$

1. The basin lag

$$t_p = C_1 C_t (LL_c)^{0.3}$$
 in hours (7.7.2)

- L = Length of the main stream in km or miles from the outlet to upstream divide
- $L_c =$ Distance in km or miles from the outlet to a point on the stream nearest the centroid of the watershed area.

•
$$C_1 = 0.75$$
 (SI), 1 (English)

• $C_t = A$ coefficient derived from gaged watersheds in the same region

2. The peak discharge

$$q_p = \frac{C_2 C_p}{t_p} \lim_{\text{in m}^3/\text{s.km}^2}$$
 (7.7.3)
• $C_2 = 2.75$ (SI), 640 (English)

• $C_p = A$ coefficient derived from gaged watersheds in the same region

To compute C_t and C_p for a gaged watershed, the values of L and L_c are measured from the basin map. From a derived UHG of the watershed, obtain the effective duration t_R in hours, basin lag t_{pR} in hours and q_{pR} in m³/s.km².

If $t_{pR} = 5.5t_R$ then $t_R = t_r$ and $q_{pR} = q_p$ And C_t and C_p can be computed from Eq. 7.7.2 and 7.7.3

If
$$t_{pR} \neq 5.5t_{R}$$
 then $t_{p} = t_{pR} + \frac{t_{r} - t_{R}}{4}$ (7.7.4)

And 7.7.1 and 7.7.4 are solved simultaneously for t_r and t_p and the

coefficients are found from 7.7.2 and 7.7.3 with $q_{pR} = q_p$ and $t_{pR} = t_p$. 3. The peak discharge in m³/s.km² for the required UHG

$$q_{pR} = \frac{q_p t_p}{t_{pR}}$$

4. The base time in hours, assuming a triangular shape for the UHG,

$$t_b = \frac{C_3}{q_{pR}}$$
 where, $C_3 = 5.56$ (SI), 1290 (English)

5. The width in hours

$$W = C_w q_{pR}^{-1.08}$$

For 75% width $C_w = 1.22$ (SI), 440 (English) For 50% width $C_w = 2.14$ (SI), 770 (English)

Usually on-third of this width is distributed before the UHG peak time and two-thirds after the peak.

Example 7.7.1

Example 7.7.2

 $q_p = _{\text{Peak discharge}}$

 $T_p =$ Time to the rise of the UHG

For given peak discharge and lag time for the duration of the excess rainfall, the UHG can be estimated from the synthetic dimensionless hydrograph for the given watershed. SCS provides a hydrograph of this type as Fig. 7.7.4 (a).

For the area of the UHG to be unity, we may show that

$$q_p = \frac{CA}{T_p}$$
 $C = 2.08$ (483.4 English units)

where peak discharge is in $m^3/s.cm$ (cfs/in in English units), time in hours and area A in square kilometers (square miles in English units).

Further it is given that, the basin lag

Example 7.7.3

UHGs for different rainfall durations

S-Hydrograph is that resulting from a continuous excess rainfall at a constant rate of 1cm/h (or 1 in/h) for an indefinite period.

$$h(t) = \text{UHG ordinates for duration } \Delta t$$

$$h(t - \Delta t) = \text{UHG ordinates for duration } \Delta t \text{ lagged by } \Delta t$$

$$g(t) = \Delta t \text{ (Sum of UHG ordinates lagged by } \Delta t \text{)} = \text{S-hydrograph}$$
ordinates for Δt

$$g(t - \Delta t') = \text{S-hydrograph ordinates lagged by the new duration } \Delta t'$$

$$= \text{Offset S-Hydrograph}$$

$$h'(t) = \frac{1}{\Delta t'} \left[g(t) - g(t - \Delta t') \right] = \text{UHG ordinates for duration } \Delta t'$$

$$= \frac{1}{\Delta t'} \left[g(t) - g(t - \Delta t') \right] = \frac{1}{(a)} \left[\frac{1}{a} \frac{1}{\Delta t'} + \frac{1}{(a)} \frac{1}{a} \frac{1$$

Example: 7.8.1

Use the 0.5-h unit hydrograph in Table 7.4.3 to produce the S-hydrograph and the 1.5-h unit hydrograph for the watershed.

Time	0.5-h UHG	S-hydrograph	Lagged S-hydrograph	1.5-h UHG
t	h(t)	g(t)	$g(t-\Delta t')$	h'(t)
(h)	(cfs/in)	(cfs)	(cfs)	(cfs/in)
0.5	404	202	0	135
1	1079	742	0	494
1.5	2343	1913	0	1275
2	2506	3166	202	1976
2.5	1460	3896	742	2103
3	453	4123	1913	1473
3.5	381	4313	3166	765
4	274	4450	3896	369
4.5	173	4537	4123	276
5	0	4537	4313	149
5.5	0	4537	4450	58
6	0	4537	4537	0