

Sultan Qaboos University College of Engineering

COURSE OUTLINE

Course Code and Title: Instructor: Section Lecture Time Place Office Hours Office Tel. E-mail Webpage CIVL 4146 Hydraulics Dr. Ahmad Sana 10/11 Mon. 8:00-9:50 (Sec. 10), Wed. 8:00-9:50 (Sec. 11) CMT/A11 Sun. to Wed. 10:00-12:50 Room # 2079, College of Engineering (West) 2524 sana@squ.edu.om http://ahmadsana.tripod.com

1. <u>Catalog Course Description</u>

This intermediate course aims to teach the design principles for engineering water works such as pipelines, open channels and turbomachinery. Lectures are supplemented by class tutorials and computer laboratory work.

2. <u>Required Background:</u>

Prerequisites by course: CIVL 4046, MATH 4174

Prerequisites by topic:

Fundamentals of algebra and arithmetic, basic principles of physics, principles of basic engineering mechanics and basic principles of fluid mechanics.

Post-requisites: None

Equivalent Courses: None

3. Textbook & Suplemental Materials:

Textbook:

Fundamentals of Hydraulic Engineering Systems by N. H. C. Hwang and R. J. Houghtalen, 4th Ed., Prentice-Hall.

Supplemental Materials:

- 1. Engineering Fluid Mechanics by Crowe, Elger and Roberson, 7th Ed., John Wiley, 1997.
- 2. Handouts

Lecture Notes: Can be downloaded from http://ahmadsana.tripod.com

4. <u>Course Objectives (to be linked to program outcomes):</u>

The objectives of this course are to give the student a fundamental knowledge of:

- 1. Calculating friction (major) loss and minor losses in pipelines and their measurements in the laboratory
- 2. Designing pump-pipeline systems
- 3. Using Solver in MS-Excel, EPANET and WaterCAD to analyze pipe networks
- 4. Calculating water hammer pressure due to rapid and slow valve closures.
- 5. Calculating and measuring water level rise in surge tanks due to water hammer
- 6. Differentiating between types of pumps
- 7. Using velocity diagrams, pump curves and similarity principles
- 8. Analyzing and designing of open channels
- 9. Calculating water surface profiles in open channels
- 10. Designing open channels

5. <u>Course Outcomes:</u>

Upon the successful completion of this course, students are expected to develop the following skills/understanding (letters in parentheses denote the program outcomes):

- 1. Ability to calculate major and minor losses in pipelines **[a]**
- 2. Ability to use laboratory equipment to measure major and minor losses in pipelines **[k]**
- 3. Ability to analyze and design pipe networks manually and with the help of computer. **[a,c,e,k]**
- 4. Ability to calculate water hammer pressure in pipelines due to rapid and slow valve closure. **[a,c]**
- 5. Ability to calculate and measure water level in surge tanks due to water hammer. **[a,c,e,k]**
- 6. Differentiate among various types of pumps and apply pump curves and similarity principles for pumps. **[a,e]**
- 7. Determine the pump properties experimentally when they are connected in series and parallel **[a,c,k]**
- 8. Ability to calculate discharge carrying capacity of open channels **[a, e]**
- 9. Ability to calculate water surface profiles in open channels manually and with the help of computer **[a, e, k]**
- 10. Ability to design lined open channels **[a, c]**

6. <u>Course Contents:</u>

The following topics will be covered in this course:

No.

Topic

- 1. Water flow in pipes: Pipe flow, Reynolds number, forces in pipe flow, Bernoulli's equation and its applications, friction loss, minor losses.
- 2. Pipelines and pipe networks: Pipelines connecting two reservoirs, Siphons, pipelines with pumps, branching pipe systems, pipe networks, water hammer and surge tanks, Using Solver in MS-Excel, EPANET and

WaterCAD to analyze pipe networks.

- 3. Water Pumps: Centrifugal pumps, Propeller pumps, Mixed flow pumps, Selection of a pump, Pumps in parallel or in series, Cavitation, Specific speed and pump similarity.
- 4. Water flow in open channels: Classification of open channel flow, uniform flow, energy principles, gradually varied flow and classifications, computation of water surface profiles, Design of lined open channels.

7. Instructional Methods:

Lectures presentation, Tutorial problems, Laboratory experiments

8. <u>Course Assessment:</u>

The degree of student achievement in this course will be assessed as follows:

1.	Design Projects	[15%]
2.	Quizzes	[15%]
3.	Laboratory Reports	[10%]
4.	Mid-Term Examination	[20%]
5.	Final examination	[40%]

9. <u>Student Responsibilities</u>

The student is referred to the Undergraduate University Regulations for more details on the following topics:

- <u>Group work</u>: Students are encouraged to work together on homework problems, but all the work submitted must be the student's own work.
- <u>Attendance</u>: In accordance with the University Regulations, it is the student's responsibility to be punctual and to attend all classes.
- <u>Academic misconduct</u>: academic misconduct is defined as the use of any dishonest or deceitful means to gain academic advantage or benefit.

10. Professional Contribution:

This is a core course that has the goal of developing the understanding and skills in the subject of hydraulics for use in Civil Engineering applications. It is a threecredit hours course on Engineering Topics.

11.<u>Useful Sites</u>:

The following links may be useful:

Check your learning style from this website: <u>http://www.personal.psu.edu/bxb11/LSI/LSI.htm</u>

A nice introduction to fluid mechanics and hydraulics:

http://www.youtube.com/watch?v=lfXDJKKPGfY&feature=related

A number of videos about fluid mechanics and hydraulics: <u>http://web.mit.edu/hml/ncfmf.html</u>

A very useful website for online calculations for open channels <u>http://ponce.tv/online_channel_hydraulics.php</u>

Week	Date	Material to be Covered	Design Project	Quiz	Test
1	23/09/13				
1.	25/09/13				
2	30/09/13				
2.	02/10/13	Course outline and Introduction			
2	07/10/13	Water flow in pipes: Bernoulli's equation			
э.	09/10/13	Friction loss calculations	1		
4	14/10/13	Friction loss calculations			
4.	16/10/13	Minor losses in pipes			
E	21/10/13	Minor losses in pipes		1	
э.	23/10/13	Pipelines and pipe networks			
6	28/10/13	Pipelines connecting two reservoirs			
0.	30/10/13	Siphons, pipelines with pumps			
7	04/11/13	Branching pipe systems, pipe networks			
7.	06/11/13	Water hammer and surge tanks			
0	11/11/13	Using EPANET to analyze pipe networks.	2		
о.	13/11/13	Types of water Pumps		2	
0	18/11/13	Propeller pumps, Mixed flow pumps			
9.	20/11/13	Velocity diagrams for centifugal pumps			
10	25/11/13	Mid-Term Examination			1
10.	27/11/13	Pump-pipeline systems			
11	02/12/13	Pumps in parallel or in series			
11.	04/12/13	Cavitation			
12	09/12/13	Specific speed and pump similarity			
12.	11/12/13	Water flow in open channels			
12	16/12/13	Uniform flow, energy principles	3	3	
15.	18/12/13	Uniform flow, energy principles			
14	23/12/13	Gradually varied flow and classifications			
14.	25/12/13	Gradually varied flow and classifications			
15	30/12/13	Computation of water surface profiles			
13.	01/01/14	Computation of water surface profiles			
16	06/01/14	Design of lined open channels			
10.	08/01/14	Design of lined open channels		4	
		Final Examination 18/01/2014, SAT. 08:00-11:00			2

12. Weekly Teaching Schedule:

<u>Note</u>: Schedule is subject to change. Any changes will be announced during the semester.