## SULTAN QABOOS UNIVERSITY

# Department of Civil and Architectural Engineering B.Sc. Civil Engineering Examinations, Spring Semester 2004

## HYDRAULICS

CIVL 4146

May 26, 2004

9:00-12:00

### The following is provided for this examination:

Answer booklet

# Candidates are permitted to bring into the examination room:

Calculator (programmable or non-programmable).

### **Instructions to candidates:**

Answer all the questions

The paper consists of SIX questions.

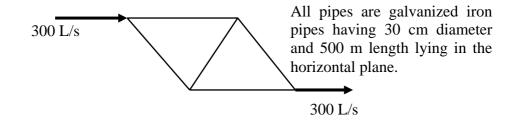
#### HYDRAULICS

#### Time allowed: 3 hours

Answer all the questions. Assume water density as  $1000 \text{ kg/m}^3$  wherever required.

#### 1.

- (a) Using Darcy-Weisbach equation, Colebrook equation (for friction factor) and Manning's formula, derive a relationship between Manning's *n* and relative roughness.
- (b) Compute Manning's n from the relationship derived in Part (a) for a concrete pipe having 30 cm diameter (e=3mm) and compare it with the standard value of n provided for this material in Table 1. [10%]


2. At a firefighters convention, a certain competition puts two contestants in mock competition. Each is armed with a fire hose (water jet) and a shield. The objective is to push your opponent backward a certain distance with the water jet. A choice of shields is offered. One shield is a flat garbage can lid; the other is a hemispherical lid that directs the water back to your opponent. Which shield would you choose? Show all the relevant calculations. [15%]

3.

(a) The flow correction for the pipe flow in a network loop for Hardy-Cross method is given as  $\Delta = -\frac{\sum KQ_a^p}{\sum |qQ_a^r|}$ . Using Hazen-Williams formula, derive

the values of p, q, r and K in the above relationship. [15%]

(b) Using the relationship in Part (a) find out the first correction for the following network: [10%]



- **4.** A flow of 2000 L/s is carried in a rectangular channel 1.8m wide at a depth of 1m.
  - (a) Will critical depth occur at a section where a hump 400 mm high is installed across the bed [10%]
- (b) What height of the hump will just cause the critical depth [5%] Assume no friction anywhere in the channel and show all the calculations.

**5.** A 1.6m wide rectangular open channel with n=0.013 carries 1900L/s of water. At one point the water depth is found to be 1.3m; 320m downstream it is measured at 1m. Calculate the bed slope of the channel using one reach. [15%]

6. A vertical jet of water issuing upward from a nozzle at a velocity of 15m/s will rise to a height of approximately 10m on the earth. To get a water jet to rise to a height of 40m on the moon, where the gravity is one-sixth of that on earth, what must be the jet velocity? Neglect atmospheric resistance. [10%]



### The following information may be useful in solving the problems:

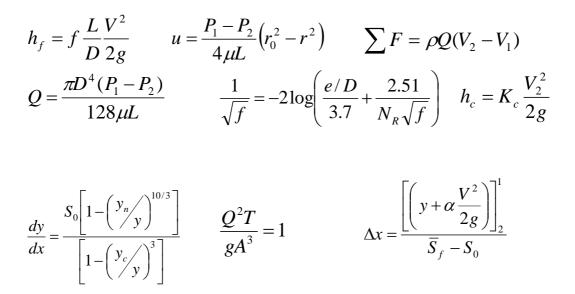



Table 1: Roughness parameters for different pipe materials

| Material                         | <i>e</i> ( <b>mm</b> ) | п     | $C_H$ |
|----------------------------------|------------------------|-------|-------|
| Riveted steel                    | 0.9-9.0                | 0.015 | 110   |
| Concrete                         | 0.3-3.0                | 0.015 | 110   |
| Ductile and cast iron            | 0.26                   | 0.013 | 120   |
| Galvanized iron                  | 0.15                   | 0.012 | 120   |
| Asphalt-dipped ductile/cast iron | 0.12                   | 0.012 | 140   |
| Commercial steel or wrought iron | 0.046                  | 0.01  | 140   |
| Copper or brass tubing           | 0.0015                 | 0.01  | 130   |
| Glass, plastic (PVC)             | ≈ 0                    | 0.01  | 140   |

| $V_2$ | Ratio of smaller to larger pipe diameters, $D_2/D_1$ |      |      |      |      |      |      |      |      |      |
|-------|------------------------------------------------------|------|------|------|------|------|------|------|------|------|
| (m/s) | 0.0                                                  | 0.1  | 0.2  | 0.3  | 0.4  | 0.5  | 0.6  | 0.7  | 0.8  | 0.9  |
| 1     | 0.49                                                 | 0.49 | 0.48 | 0.45 | 0.42 | 0.38 | 0.28 | 0.18 | 0.07 | 0.03 |
| 2     | 0.48                                                 | 0.48 | 0.47 | 0.44 | 0.41 | 0.37 | 0.28 | 0.18 | 0.09 | 0.04 |
| 3     | 0.47                                                 | 0.46 | 0.45 | 0.43 | 0.40 | 0.36 | 0.28 | 0.18 | 0.1  | 0.04 |
| 6     | 0.44                                                 | 0.43 | 0.42 | 0.40 | 0.37 | 0.33 | 0.27 | 0.19 | 0.11 | 0.05 |
| 12    | 0.38                                                 | 0.36 | 0.35 | 0.33 | 0.31 | 0.29 | 0.25 | 0.20 | 0.13 | 0.06 |