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Expected student outcomes

Ability to calculate discharge carrying
capacity of open channels [a, e]

Ability to calculate water surface profiles
in open channels manually and with the
help of computer [a, e, k]
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Difference between pipe and open channel flow
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TABLE 6.1 Cross-Sectional Relationships for Open-Channel Flow
Section Type Area (A) Wetted perimeter (P) Hydraulic Radius (R,) Top Width (T) Hydraulic Depth (D)
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Source: V. T. Chow, Open Channel Hvdraulics (New York: McGraw-Hill, 1959).
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6.1 Open channel flow classification

e Steady and Unsteady flow
¢ Uniform and non-uniform flow

Rapidly Gradually
varied flow varied flow

Sluice Gradually Rapidly

gate varied varied Uniform
flow flow flow
\V4 f =t
Z
,@g)) Hydraulic
jump ’

MWWWWWW

(a)

i\\ ﬂ%_\

(a) Gradually varied flow (GVF), rapidly varied flow (RVF), and
uniform flow (UF) (b) and (c) Unsteady varied flow
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6.2 Uniform flow in open channels

£,
Channel bottom

Datum line

Applying momentum equation, we get Z F=0= -7, PL + yAL sin@

For very small angle of inclination (6 less than 10°) sind =tand = S,

and foruniformflow S =5, =S, Ty = }'RSe

In 1769 a French engineer, Antoine Chezy, assumed that the resisting force per
unit area of the channel bed is proportional to the square of the mean velocity, KVZ,
where K is a constant of proportionality. The total resistance force may thus be written as

Fy = %PL = KV2PL (6.1¢c)

where T is the resisting force per unit area of the channel bed, also known as the wall
shear stress.
Substituting Equation (6.1b) and Equation (6.1c) into Equation (6.1a), we have

YALS, = KV?PL

v= KRR

In this equation, A/P = R, and ./¥/K may be represented by a constant, C. For uni-
form flow, Sy = S,, the above equation may thus be simplified to

or

¥V = GRS, (6.2)

in which Ry, is the hydraulic radius of the channel cross section. The hydraulic radius
is defined as the water area divided by the wetted perimeter for all shapes of open
channel cross sections. 8
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Over the past two centuries many attempts have been made to determine the
value of Chezy’s C. The simplest relationship and the one most widely applied in the
United States is derived from the work of an Irish engineer, Robert Manning (1891-
1895).* Using the analysis performed on his own experimental data and on those of
others, Manning derived the following empirical relation:

1516
C=-=R :

SR (6.3)
in which n is known as the Manning’s coefficient of the channel roughness. Some typ-
ical values of Manning’s coefficient are given in Table 6.1.

Substituting Equation (6.3) into Equation (6.2), we have the Manning’s for-

mula for uniform flow
v = 1§51 (6.4)

where V has units of m/sec, R, is given in m, S, in m/m, and 7 is dimensionless.
The discharge in a uniform flow channel may be determined by

0= AV = %AR%’SS? (6.5a)

where Q is given in m*/sec.

On the right-hand side of this equation, the water area, A, and the hydraulic radius, Ry,

are both functions of water depth, d, which is known as the uniform depth or normal
9

depth when the flow is uniform.

In the BG system, Manning’s equation is
Q = l-:9AR%/3S;/'Z

where Q is in ft¥/sec, A in ft%, R, in ft, S, in ft/ft, and n is dimensionless.

TABLE 6.2 Typical Values of Manning's n

Channel Surface 1
Glass, PVC, HDPE 0.010

Smooth steel, metals 0.012
Concrele 0.013

Asphalt 0.015
Corrugated metal 0.024

Earth excavation, clean 0.022-0.026
Earth excavation, gravel and cobbles 0.025-0.035
Earth excavation, some weeds 0.025-0.035
Natural channels, clean and straight 0.025-0.035
Natural channels, stones or weeds 0.030-0.040
Riprap lined channel 0.035-0.045
Natural channels, clean and winding 0.035-0.045
Natural channels, winding, pools, shoals 0.045-0.055
Natural channels, weeds, debris, deep pools 0.050-0.080
Mountain streams, gravel and cobbles 0.030-0.050
Mountain streams, cobbles and boulders 0.050-0.070 10
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Example 6.1

A 3-m-wide rectangular irrigation channel carriedischarge of 25.3 ffsec at
a uniform depth of 1.2 m. Determine the slope ef¢hannel if Manning's
coefficient is n = 0.022.

A=by=(3)(1.2)=36m’
P=bF+2y=54m
P 54 3

13

Example 6.3

If the discharge in the channel in Example 6.hiseased to 40 #sec, what
is the normal depth of the flow?

Area: A= by =3y

Wetted Perimeter: P=b+2y=3+ 2y

Hydraulic Radius: Ry,

| e
0 = —AR;"si"?
1

" 3y 213
40 = H}"(' J}—) (0 04]')1;’3
0.022"7\3 + 29/

3y, \23  (0.022)(40
2 ) =“7’[}=g|_346 Y= Yys 1.69m
2y

(0.041)12
14
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Example 6.3

nQ (0.022)(40) s
(1.0)8§26%3  (1.0)(0.041)12(3)32
Yo/b = 0.56and y, = (0.56)(3.0) = 1.68 m.

15

Example 6.4

Prove that the best hydraulic trapezoidal secsamhalf-hexagon.

To find the best hydraulic section we need to minénthe cost of material used

in the channel. In other words, we need to minintiewetted perimeter, for
given roughness, discharge and bed slope.

| B=b+2my

| . | | Free board
NS 4
| m
| b
A=by+my’ ®
P=b+2yvm*+1 (2

A
Eliminatingb from the above equations, we g&t= v —my+2yVm’ +1

16
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Now consider bott® andm constant and let the first derivative®fvith
respect toy equal zero to obtain the minimum valueRof

cj—dl;=iz—m+2«/m2+1:0
y 2
by + my
SubstitutingA from Equation (1), we get LAt A (2\/ m’ +1)— m

b=2y(x/m2 +1—m) ©)

A by + my?
By definition, hydraulic radius is: R, = —~= >~ 1Y

P b+2yvym?+1

Substituting the value dif from Equation (3) into _Yy
the above equation and simplifying, we have R, = 2

It shows thathe best hydraulic trapezoidal section has a hydraulic
radius equal to one-half of thewater depth. Substituting Equation (3)
into Equation (2) and solving fét, we have

P= 2y(2\/ m? +1- m) (4)

17

To determine the value afthat maked the least, the first derivative &f
is taken with respect tm. Equating it to zero and simplifying, we have

m=§:cot(60")

= 1 2+ _i —ﬂ —E =bsi
b =2y [ﬁj 1 Gl B Y= b—bsm(60°)

Which shows that it is a hexagon. We can also obshiatP = 3B

18
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K 77 A=Area
"""" P=Wetted perimeter
b B= Top width
Shape Best A P B
Geometry
Trapezoidal | Half hexagoh 173y? 346y 231y
Rectangle Half squard 2y2 4y 2y
Triangle Half square y? 283y 2y
Semicircle - 0575> 7y 2y
Parabola - 189y 377y 283y 19

6.4 Energy principles in open channel flow

The elevation (potential) energy head in open-channel flow is measured with respect to a
selected horizontal datum line. The vertical distance measured from the datum to the channel
bottom (z) is commonly taken as the zlevation energy head at the section.

Therefore, the total energy head at any section in an open channel is generally expressed as

H=— +y+z (6.7)

Specific energy in a channel section is defined as the energy head measured with respect to
the channel bottom at the section. According to Equation 6.7, the specific energy at any section is
V2 _
E=—+y (6.8)
2g
or the specific energy at any section in an open channel is equal to the sum of the velocity head
and the water depth at the section.
Given the water area (A) and the discharge (Q) at a particular section, Equation 6.8 may be
rewritten as
QZ
2gA®

Thus, for a given discharge Q, the specific energy at any section is a function of the depth of the

e

Ty (6.9)

flow only.

10/5/2013
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When the depth of the flow, v, is plotted against the specific energy for a given discharge]
at a given section, a specific energy curve is obtained (Figure 6.8). The specific energy curve has
two limbs: AC and CB. The lower limb always approaches the horizontal axis toward the right
and the upper limb approaches (asymptotically) a 45°-line that passes through the origin. At any)|
point on the specific energy curve, the ordinate represents the depth of the flow at the section,
and the abscissa represents the corresponding specific energy. Usually, the same scales are used|
for both the ordinate and the abscissa.

¥
B -
B 2 Subcritical and
¥4 el -
_ . A s supercritical flow
2 A4 Pty
o’: #H
AR g
/A Alternate depths
A
e e ’l' :./ % :
S vy G
A el kT it - {45 ‘ ~"~!
Ye s fi‘ i Q +'5~'Q‘+AQ
R L N-bl___L..__ il
¥ f/ L‘ w.,...l- l-q--..__-_.. i
i S, S
o 1 ¥4 il T
E, E. Ep E, E
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Figure 6.8 Specific energy curves of different discharges at a given channel section

At the critical state the specific energy of the flow takes a minimum value. This value can
be computed by equating the first derivative of the specific energy with respect to the water
depth to zero:

2 2
L4 )L

dy  dy\2gA2 gA® dy
The differential water area (dA/dy) near the free surface is dA/dy = T, where T'is the top widih
of the channel section. Hence,

——=+1=0 (6.10a)

An important parameter for open-channel flow is defined by A/T = D, which is known as
the hydraulic depth of the section. For rectangular cross sections, the hydraulic depth is equal to
the depth of the flow. The above equation may thus be simplified to

02 V2
L OREpS SIS i (6.10b)
dy gDA” gD
v
Froude Number, Np = ——— — |

vV gD 22
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From Equation 6.10, we may also write (for critical flow)

A? .
= = = pA?
T <

o [1Q

(6.13)
In a rectangular channel, D = yand A = by. Therefore,

Q?.
4

Because this relation is derived from the critical flow conditions stated above, y = y,,
which is the critical depth, and

(6.14)
g
where ¢ = O/b, is the discharge per unit width of the channel.

23
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Example 6.5
A hydraulic transition is designed to connect two rectaaguhannels of the same
width by a sloped floor. If the channel is 3 m wide and is cargya discharge of 1
m3/sec at 3.6 m depth, determine the water surface profiledriréimsition. Assume 0J1
m energy loss uniformly distributed through the transition

O1

|
|
I
I
I
y;=3.6m [
|
|
|
|
[
|

Datum line —/1 =

4| =04 m

26
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- (15)° 1.27
‘f:, — A P = : —2 | }l = - — }:
2gA 2(9.81)(3y) y*
. Q 15
V, = = ———— = 1.39 m/sec
4;  (3.6)3)
vZ  (1.39) 010
g e Im
2g 2(9.81)
V7
H; = ')_ + w4+ z,=0.10 + 3.60 + 0.40 = 4.10m
=g
Ve | |
H=—+y+z=H—-01=400m
=5
E,=H, =400m
27
2
YA Vo= ?/gz 1.37 m
& [~ E(m)=2.05m
3 - vy (m) E (m)
0.5 5.60
2 1.0 2.27
v b 2.0 2.32
I 3.0 232
05 55 1 1 - 30 | 3.4
1 2 3 4 E 4.0 4.07
Section | Specific energy, E | E(m) | y (m)
Inlet 3.7 3.6
4.00m | =3.7-0.1/5+0.4/5= | 3.76 | 3.67
8.00m |=3.76-0.1/5+0.4/5=| 3.82 | 3.73
12.00 m |=3.82-0.1/5+0.4/5=| 3.88 | 3.79
16.00 m |=3.94-0.1/5+0.4/5=| 3.94 | 3.86
Exit =3.94-0.1/5+0.4/5= 4 3.92
28
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6.5 Hydraulic jumps
Initial depth and sequent depth of a hydraulic jump (Conjugate depths)

Specific energy Specific force
curve
Np=————————— ——— e —————
I
I
O !
B ! ©)}
N B A VAV 7%
t AF : #‘1 — VY |
E, E, E 7777777777777, /, Fi=F,
Fi—-Fy = pg(V,-Vy)
Y 2 ; Y ) q
Fy=—vy Fq = —v3, Vi=—, Va=—
1= 5N 2775 ¥z 1 Y 2= 3y
Vv
<, 17" ¥2 2 _Lviveng —1)| YT \/’]_
= Y il R —_— = — / }. JT_ o) - ¥
g .}]. 2 2 1 2L 1 / 2g9, I
Example 6.7

a jump. Compute the downstream water depth and the critegathd

500 e . D
— T— 5("‘ ['1._ f '11. ) SE—
=73 /sec Ve \4.2.2 = 4.27 ft
50
V= A = — = 25 fifsec
Y1 2
N L o312
F — = .
: AY EV1

2 T —f V1 +8(3.12)7 - 1)

30

A 10-ft-wide rectangular channel carries 500 cfs of watea atft depth before entering

10/5/2013
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Equation 6.15 may also be arranged as
Fy+ pqVy = Fy + pgVy
where
F,=F + pgV (6.19)

The quantity F is known as the specific force per unit width of the channel. For a given
discharge, the specific force is a function of the water depth at a given section. When F | is plot-
ted against the water depth, the resulting curve is similar to a specific energy curve with a vertex|
that appears at the critical depth. A typical specific force curve is shown in Figure 6.11.

The energy head loss through the hydraulic jump (AE) may then be estimated by applying

the definition
V2 2
AE = 2% T - 2_5“’- + ¥

2
1 5 g (1 13,
= = . e — & e U e e g, —
2g(V1 Va) + (y1 = y2) Zg(y% > FiHh=3)

Substituting Equation 6.16 into the above equation and simplifying, we get

(2 — }’1)3
4y1y2

AE =

31

Example 6.8

A long, rectangular open channel 3 m wide carries a discharge of 15 m’/sec. The channel slope is 0.004,
and the Manning’s coefficient is 0.01. At a certain point in the channel, flow reaches normal depth.

(a) Determine the flow classification. Is it supercritical or suberitical?
(b) 1If a hydraulic jump takes place at this depth, what is the sequent depth?
(c) Estimate the energy head loss through the jump.

Solution

(a) The critical depth is calculated using Equation 6.14 and y. = 1.37 m. The normal depth of this
channel can be determined by the Manning equation (Equation 6.5);

Q= lA]R%/ESUZ
" .

B A wmb .
A=wb Ry=—=—""—"— b=3m
Pl 2y1 + b
1 3y )”3 ;
= rr——) .004)1/2
15 0_01(3y1)(2y1 ) (0.004)
15 J
vy = 1.08m, Vi =-—=4.63m/sec
v
N Vi 1.42
Py = — = 152 TRecause Nz = 1, the flow is supercritical.
Vi £y 2

32
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(b) Applying Equation 6.17, we get
Yir ] -
(V1 +8NF — 1) =157y, = 1.70m

7z =
(¢) The head loss can be estimated by using Equation 6.20:

(y2 —n) (0.62)°
=0.032m

AR =
4dy1y

T 4(1.70)(

1.08)

33

6.6 Gradually Varied Flow

restated here as

H= +y+z
8

energy gradient in the direction of the flow:

di _ —Q’dA  dy |

dx g,ri3 dx dx

The total energy head at any section in an open channel, as defined in Equation 6.7, is

2
0?
+ YT E

- 2g4?

To compute the water surface profile, we must first obtain the variation of the total energy
head along the channel. Differentiating H with respect to the channel distance x, we obtain the

dz QT dy

dx gAJE

where dA = T'(dy). Rearranging the equation gives

dy dz
——y _I_ it
dx  dx

ad _ dz
dy d .
2 = B f’x 621)
dx o°T
gA'.’)
34

10/5/2013
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Using the Manning formula (Equation 6.5), we get

. dl B HZQZ B REQ?. (6 22)
€ a 342 32,1043 ]
dx  RYPA?2 pHylY
The slope of the channel bed may also be expressed in similar terms if uniform flow were
assumed to take place in the channel. Because the slope of the channel bed is equal to the energy

slope in uniform flow, the hypothetical uniform flow conditions are designated with the subscript
n. We have

dZ B HZQZ
- b (—blywﬁ 1 (6.23)

From Equation 6.14 for rectangular channels,
y:dgzﬁg
€: g g b?_

3
gA;
g = g = 5

SO =

or

(6.24)

35

Substituting Equations 6.22, 6.23, and 6.24 into Equation 6.21, we have
10/3
d SD[I - (%) }
b (6.252)
dx Ye !
1 = =
¥

For nonrectangular channels, Equation 6.24a can be generalized as

fl_— (6.25b)
dr [1 B (E)MJ 6.
y

where the exponents M and NV depend on the cross-sectional shape and the flow conditions as
given by Chow.*

This form of the gradually varied flow equation is very useful for a qualitative analysis,
which helps to understand the gradually varied flow classifications covered in the next sections.
Other forms are often used to compute water surface profiles. Physically, the term dy/dx
represents the slope of the water surface with respect to the bottom of the channel. For
dyldx = 0, the water depth remains constant throughout the reach or the special case of uniform
flow, For dy/dx << 0, the water depth decreases in the direction of the flow, For dy/dx > 0, the
water depth increases in the direction of the flow. Solutions of this equation under different
conditions will yield the various water surface profiles that occur in open channels.

10/5/2013
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6.7 Classifications of Gradually Varied Flow

Depending on the channel slope, the surface conditions, the sectional geometry,
and the discharge, open channels may be classified into five categories:

1. steep channels,
2. critical channels,
3. mild channels,
4. horizontal channels, and
5. adverse channels.
Steep channels: Yul¥e <10 or  y, <y,
Critical channels: Yu/¥e = 1.0  or ¥n = Ve
Mild channels: Yo/¥e > 1.0  or Y = Y,
Horizontal channels: S5 = 0
Adverse channels: Sp <0
37
M-1 =k, M,
P Mfz( ““““““““ —
_____________ i

(a) (b)
—_ S-1 =
e S i S3
Sy o N
- S-3 ward T, y
% S
Steep slope 24 W%%
) o — Normal depth line (d) ’
ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ Critical depth line %

10/5/2013
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Adverse slope
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TABLE 6.3 Characteristics of Water Surface Profile Curves

Channel Symbol Type Slope Depth Curve
Mild M 1 Sy >0 V>V, > ¥, M-1
Mild M 2 So >0 Yn >y > Ye M-2
Mild M 3 Sy >0 Vp = Ve > ¥ M-3
Critical C 1 So >0 V>V = Ve C-1
Critical C 3 So =0 Y=Y >y C-3
Steep S 1 Sy >0 Y>>y, >y, S-1
Steep S 2 So >0 Yo =V >y, S-2
Steep S 3 So >0 R S-3
Horizontal H 2 So=20 v >y, H-2
Horizontal H 3 So=20 Ve >y H-3
Adverse A 2 So <0 y> Yy A-2
Adverse A 3 Sop <0 Ve >y A-3
41

6.8 Computation of Water Surface Profiles

Water surface profiles for gradually varied flow may be computed by using Equation 6.25. The
computation normally begins at a section where the relationship between the water surface ele-
vation (or flow depth) and the discharge is known. These sections are commonly known as
control sections (or mathematically, boundary conditions). A few exam ples of common control
sections in open channels are depicted in Figure 6.13. Locations where uniform flow occurs can|
also be viewed as a control section because the Manning equation describes a flow depth-
discharge relationship, Uniform flow (i.e., flow at normal depth) tends to occur in the absence of
or far away from other control sections and where the stream slope and cross section are
relatively constant.

A successive computational procedure based on an energy balance is used to obtain the|
waler surface elevation at the next section, either upstream or downstream from the control sec-
tion. The distance between sections is critical because the water surface will be represented by a
straight line. Thus, if the depth of flow is changing quickly over short distances, adjacent
sections should be closely spaced to represent accurately the water surface profile. The step-by-
step procedure is carried out in the downstream direction for rapid (supercritical) flows and in
the upstream direction for tranquil (suberitical) flows.

42
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6.8 Computation of Water Surface Profiles

Reservoir
height
Control L E
l section . ¥y =
- - - S ///
) . Mild slope Reservoir
Reservoir %
Sfcc{-? slope /. L}nlrul
section

Depth computed from

Control :
: the mild slope reach

section

Control
section

Horizontal Mild slope

Reservior
slope

Figure 6.13 Control sections in open channels

6.8.1 Standard step method

The standard step method is presented in thisoseitticalculate gradually varied flow water
surface profiles. The method employs a finite diffece solution scheme to solve the differengial,
gradually varied flow equation (Equation 6.25)slthe most common algorithm used in
computer software packages that solve gradualigddiow profiles.

The standard step method is derived directly fronerergy balance between two adjacent
cross sections (Figure 6.14) that are separatedsyficiently short distance so that the water
surface can be approximated by a straight line.éftexgy relation between the two sections ay
be written as

v Vi
ORI P 3 (6.262)

2g 28
V3 Vi - :
( + yq + 2—8) = (Zi ¥ F 2—) + S AL (6.26b)
E; = E{ + losses (6.26c)

where z is the position head (channel bottom elevation with respect to some datum) and E' is the
total energy head (position + depth -+ velocity). It is important to note that, in Equation 6.26,
the sections | and 2 represent downstreamn and upstream sections, respectively. If the sections are
numbered differently, the losses should always be added to the downstream side.

22



Figure 6.14 Energy relationships in a water surface profile

45

Equation 6.26b cannot be solved directly for the unknown depth (e.g., y,) because
V, and S, depend on y,. Therefore, an iterative procedure is required using successive

approximations of y, until the downstream and upstream energies balance (or come within an
fici.‘@ptable range). The energy slope (§,) can be computed by applying the Manning equation,
in either SI units

n?v?

Sy=""
€ 4/3
R h

(6.27a)

where S, is the average of the energy (EGL) slopes at the upstream and downstream sections
A tabulated computation procedure is recommended as illustrated in the example problem:s
to follow.

46
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6.8.2 Direct step method

In the direct step method, the gradually varied flow equations are rearranged to determine the
distance (AL) explicitly between two selected flow depths. This method is applicable to pris-
matic channels only because the same cross-sectional geometric relationships are used for all the
sections along the channel.

Replacing sections 1 and 2 with U and D, respectively, and noting that Sg = (zy — zp)/AL =
Az/AL Equation 6.26b is rearranged as

2 2

Vb i
(ip ¥5) = [+ 2=
AL = 2g - 2g :ED_EU

So — Se So — S,

(6.26d)

where E = y + V?/2g is specific energy. In Equation 6.26d, U and D represent upstream and
downstream sections, respectively. For subcritical flow, the computations begin at the down-
stream end and progress upstream. In this case y, and £}, would be known. An appropriate value
for v, is selected and the associated E,, is calculated. Then AL is determined by using Equation
6.26d. For supercritical flow, the computations begin at the upstream end and progress down-
stream. In this case, Yy and EU would be known. An appropriate valie for ¥pis selected, and the
associated E}, is calculated. Then AL is determined by using Equation 6.26d.

47

Example 6.9

A grouted-riprap, trapezoidal channel (n = 0.025) with a bottom width of 4 meters and side slopes of
m = | carries a discharge 12.5 m*/sec on a 0.001 slope. Compute the backwater curve (upstream water
surface profile) created by a low dam that backs water up to a depth of 2 m immediately behind the dam.
Specifically, water depths are required at critical diversion points that are located at distances of 188 m,
423 m, 748 m, and 1,675 m upstream of the dam.

Solution
Normal depth for this channel can be calculated by using Equation 6.5 (iterative solution), Figure 6.4 (a), or
appropriate computer software. Using Figure 6.4 (a),

nQ (0.025)(12.5)

- = 0.245
kySEPHE (1.00)(0.001)12 (4)%?

From Figure 6.4 (a), with m = 1, we obtain
y/b = 0.415

therefore, y, = (4 m)(0.415) = 1.66 m.
Critical depth for this channel can be calculated by using Equation 6.13 (iterative solution),
Figure 6.9 (a), or appropriate computer software. Using Figure 6.9 (a),
om>'? (12.5)(1)**

g“l_f'Z be?. N (9.81)”2 (4)5;’2 = 0.125
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From Figure 6.9 (a), we obtain
my,/b = 0.230; therefore, y, = (4 m){0.230)/1.0 =0.92m

We will first use the standard step method. Water surface profile computations require the use of the
Manning equation (Equation 6.27a), which contains the variables R, and V. Recall from earlier discussions
that R, = A/P, where A is the flow area and P is the wetted perimeter, and V = O/A.

The computation procedure displayed in Table 6.4 (a) is used to determine the water surface profile
The depth just upstream from the dam is the control section, designated as section 1. Energy balance com-
putations begin here and progress upstream (backwater) because the flow is subcritical (y, < y,). The
finite difference process is iterative; the depth of flow is assumed at section 2 until the energy at the first
two sections match using Equation 6.26b. Once the water depth at section 2 is determined, the depth of flow
at section 3 is assumed until the energies at sections 2 and 3 balance. This stepwise procedure conftinues
upstream until the entire water surface profile is developed.

Because the starting depth of 2.00 m is greater than the normal depth and normal depth exceeds crit-
ical depth, the profile has an M-1 classification (Figure 6.12). The flow depth will approach normal depth
asymptotically as the computations progress upstream, as depicted in Figure 6.13 (c). Once the depth
becomes normal, or relatively close, the computation procedure is ended. The first few standard step com-
putations are displayed in Table 6.4 (a); completion of the problem is left to the stucent in Problem 6.8.6.
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TABLE 6.4 (a) Water Surface Profile (Backwater) Computations Using the Standard Step Method (Example 6.9)
(13)
(3) 4 (5) (6) (7 (8) 9) 12) Total
() (2) hi z A Vv V}'I'2g P Ry (10) (11) hy Energy
Section un (m) (m) (mz) (m/sec) (m) (m) (m) S, vagj (m) (m)
1 D 2.00 0.000 12.00 1.042  0.0553 9.657 1.243  0.000508 0.000538 0.1011 2.156
2 U 1.94 0.188 11.52 1.085  0.0600 9487 1215  0.000567 (AL = 188 m) 2.188
Note: The trial depth of 1.94 m is teo high; the energy does not balance. Try a lower upstream depth.
1 D 2.00 0.000 12.00 1.042  0.0553 9.657 1.243  0.000508 0.000554 0.1042 2.159
2 u 1.91 0.188 11.29 1.107  0.0625 9.402 L.201  0.000600 (AL = 188 m) 2.160
Note: The trial depth of 1.91 m is correct. Now balance energy between sections 2 and 3.
2 D 1.91 0.188 11.29 1.107  0.0625 9.402 1.201  0.000601 0.000673 0.1582 2319
3 U 1.80 0.423 10.44 1.197  0.0731 9.001 1148 0.000745 (AL = 235m) 2296
Note: The trial depth of 1.80 m is too low; the energy does not balance. Try a higher upstream depth.
2 D 1.91 0.188 11.29 1.107  0.0625 9.402 1.201  0.000601 0.000659 0.1549 2315
3 U 1.82 0.423 10.59 1.180  0.0710 9.148 LI58 0000716 (AL = 235m) 2314

Note: The trial depth of 1.82 m is correct. Now balance energy between sections 3 and 4.

Column (1) Section numbers are arbitrarily designated from downstream to upstream.
Column (2)  Sections are designated as either downstream (D) or upstream (L) to assist in the energy balance.

Column (3)  Depth of flow (meters) is known at section | and assumed at section 2. Once the energies balance, the depth is now known at section 2, and the depth at
section 3 is assumed until the energies at sections 2 and 3 balance.

Column (4)  The channel bottom elevation (meters) above some datum (e.g., mean sea level) is given. In this case, the datum is taken as the channel bottom at section 1.
The bottom slope and distance interval are used to determine subsequent bottom elevations.

Column (5)  Water cross-sectional area (square meters) corresponds 1o the depth in the trapezoidal cross section.

Column (6) Mean velocity (meters per second) is obtained by dividing the discharge by the area in column 3.
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Column (7) Velocity head (meters).

Column (8) Welted perimeter (meters) of the trapezoidal cross section based on the depth of flow.

Column (9)  Hydraulic radius (meters) equal to the area in column 5 divided by the wetted perimeter in column &

c
c
Ci
C

olumn (10)  Energy slope obtained from Manning equation (Equation 6.27a).

olumn (11} Average energy grade line slope of the two sections being balanced.

olumn (12)  Energy loss (meters) from friction between the two sections found using by = Setavg)(AL) from Equation 6.26b.

olumn (13)  Total energy (meters) must balance in adjacent sections (Equation 6.26b). Energy losses are always added to the downstream section. Also, the energy
balance must be very close before proceeding to the next pair of adjacent sections or errors will accumulate in succeeding computations. Thus, even though
depths were only required to the nearest 0.01 m, energy heads were calculated to the nearest 0.001 m.

TABLE 6.4 (b) Water Surface Profile (Backwater) Computations Using the Direct Step Method (Example 6.9)

¥ A 2] R, vV V22g E Distance to

Section uiD (m}) (m?) (m) (m) (m/sec) (m) (m) S, AL(m) Dam (m)
1 D 2.00 12.00 9.657 1.243 1.042 0.0553 2.0553 0.000508 0
2 [ 1.91 11.29 0.402 1.201 1.107 0.0625 1.9725 0.000601 186 186

A distance of 186 m separates the two flow depths (2.00 m and 1.91 m).
2 D 1.91 11.29 0.402 1.201 1.107 0.0625 1.9725 0.000601 186
3 U 1.82 1059 9.148 1.158 1.180 0.0710 1.8910 0.000716 239 425

A distance of 239 m separates the two flow depths (1.91 m and 1.82 m).
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6.9 Hydraulic design of open channels
TABLE 6.6 Stable Side Slopes for Channels

Material Side Slope® (Horizontal: Vertical )
Rock Nearly Vertical
Muck and peat soils 41
Stff clay or earth with concrete lining sl to 1:1
Earth with stone lining or earth for large channels 1:1
Firm clay or earth for small ditches 11/5:1
Loose, sandy earth 2:1to 4:1
Sandy loam or porous clay 3:1

AIf channel slopes are to be mowed, a maximum side slope of 3:1 is recommended.
Source: Adapted from V. T. Chow, Open Channel Hydraulics (New York: McGraw-Hill, 1959).
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Freeboard is the vertical distance between the top of the channel and the water surface that
prevails under the design flow conditions. This distance should be sufficient to allow variations
in the water surface because of wind-driven waves, tidal action. occurrence of flows exceeding
the design discharge, and other causes. There are no universally accepted rules to determine an
acceptable freeboard, In practice, freeboard selection is often a matter of judgment, or it is stipu-
lated as part of the prevailing design standards. For example, the U.S. Bureau of Reclamation
recommends that unlined channel freeboard be computed as

F=\Cy (6.28)

where F = freeboard, y = flow depth, and C = freeboard coefficient. If # and y are in ft, C
varies from 1.5 for a channel capacity of 20 cfs to 2.5 for a channel capacity of 3,000 cfs or more.
[f metric units are used with F and y in meters, C varies from 0.5 for a flow capacity for 0.6 m?/s
o 0.76 for a flow capacity of 85 m*/s or more. For lined channels, the Bureau recommends that
he curves displayed in Figure 6.15 are used to estimate the height of the bank above the water
jpurface (W.S.) and the height of the lining above the water surface.
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TABLE 6.7 Suggested Maximum Permissible Channel Velocities

Channel Material Vi (ft/sec) Vi (m/sec)

Sand and Gravel

Fine sand 2.0 0.6
Coarse sand -10 1.2
Fine gravel® 6.0 1.8
Earth

Sandy silt 2.0 0.6
Silt clay 35 1.0
Clay 6.0 1.8

*Applies to particles with median diameter (Dy) less than 0.75 in (20 mm).
Source: U.S. Army Corps of Engineers. “Hydraulic Design of Flood Control
Channels,” Engineer Manual, EM 1110-2-1601. Washington, DC:
Department of the Army, 1991.
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1.

e W

=

. Compute the required flow area from A = Q/V

6.9.1 Unlined channels

For the specified channel material, determine the Manning roughness coefficient from
Table 6.2, a stable side slope from Table 6.6, and the maximum permissible velocity
from Table 6.7.

- Compute the hydraulic radius (R,) from the Manning equation rearranged as

R. = ( 1 V.—nax )3& (6 ?9)
p= | — 2 2
k' VS,

where ky; = 1.49 ft'*/sec for the conventional U.S. unit system and 1.0 m!'/sec for
the metric system.

max:

. Compute the wetted perimeter from P = A/R;,.
. Using the expressions for A and P given in Table 6.1, solve for the flow depth (y) and

the bottom width (b) simultaneously.

. Check the Froude number and ensure that it is not close to unity.
. Add a freeboard (Equation 6.28) and modify the section for practical purposes.
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Fxample 6.11

An unlined channel to be excavated in stiff clay will convey a design discharge of @ = 9.0 m*/sec on a
slope of Sy = 0.0028. Design the channel dimensions using the maximum permissible velocity method.

Solution

From Table 6.6, i = 1.0 for stiff clay; from Table 6.2, use n = 0.022 (clean and smooth surface). Also,
from Table 6.7, Vi, = 1.8 m/sec. Using Equation 6.29 with ky = 1.00

[ 0.022(1.8) }m
= | ——=| =0.64Tm
1.00V/0.0028

Also, A = Q/V o = 9.0/1.8 = 5.0 m? Hence, P = A/Ry = 5.0/0.647 = 7.73 m. Now, from expres-
[sions given in Table 6.1 and using m = 1.0,

A=(b+my)y=(b+y)y=>5m

[end

P=b+2yV1+m =5b+283y=773m

We now have two equations with two unknowns, y and b. From the second equation, b = 7.73 — 2.83y.
Substituting this into the first equation and simplifying yields

1.83y% — 7.73y + 5.00 =0

This equation has two roots, y = 0.798 m and 3.43 m. The first root resulis in a channel width of
b=17.73 —2.83(0.798) = 5.47 m. The second root results in a channel width of b =7.73 —
2.83(3.43) = —1.98 m. Obviously, a negative channel width has no physical meaning. Therefore y =
0.798 m will be used

Next we will check to see if the Froude number is close to the critical value of 1.0. From the expres-
sion given for the top width in Table 6.1,

T = b+ 2my = 5.47 + 2(1)0.798 = 7.07 m

Then the hydraulic depth becomes D = A/T = 5.0/7.07 = 0.707 m, and finally
v 1.8

VgD V9.81(0.707)

This value indicates that, under the design flow conditions, the flow will not be near the critical state.
Finally, we will determine a freeboard using Equation 6.28. It is known that C varies from 0.5 for
a channel capacity of 0.6 m*/s 0 to 0.76 for a capacity of 85 m’/s. Assuming this variation is linear. we

determine C as being 0.526 for @ = 9.0 m®/s by interpolation. Then,
F =V0.526(0.798) = 0.648 m

The total depth for the channel is y + F = (0.798 + 0.648) = 1.45m & 1.5 m (for practicality in
field construction). The bottom width of 5.47 mis increased to 5.5 m for the same reason. The top width of
the excavated channel then becomes b + 2m(y) = 5.5 + 2(1)(1.5) = 8.5 m.

Ng

= 0.683
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6.9.2 Rigid boundary channels

1. Select m and determine » for the specified lining material.
2. BEvaluate the ratio b/y from Equation 6.30.

3. Rearrange the Manning formula as

[(6y) + 2VT+ m2J [ oy \3m

y = - : (6.31)
[(5/y) +m[™® V5o
and solve for y knowing all the terms on the right-hand side. Then find b.
4. Check the Froude number.

5. Determine the height of lining and the freeboard using Figure 6.15 and modify the
section for practical purposes.
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Example 6.12

A trapezoidal, concrete-lined channel is required to convey a design discharge of 15 m%/s ec. The channel
bottom slope is 5g = 0.00095, and the maximum side slope based on local ordinances is m = 2.0, Design
the channel dimensions using the best hydraulic section approach,

Solution
From Table 6.2, n = 0.013 for concrete. Substituting m = 2 into Equation 6.30, we find

ii =2(V1+27-2) = 0472

Next, using Equation 6.31 with ky; = 1.0 for the metric unit system,
[(0.472) + zm]“‘[uso)(u.omqm
y= = — =1.69m
[(0.472) + 2]® 1.0V/0.00095

Then, b = 0.472(1.69) = 0.798 m. For this section,

4 = (b+ my)y=[0.798 + 2(1.69)]1.69 = 7.06 m’,

T =b+2my=0.798 + 2(2)1.69 = 7.56 m,

D = A/T =7.06/7.56 = 0.934m,

V. =0/A=150/7.06 = 2.12m/sec, and

Np = Vi(gD)"? = 2.12/[9.81(0.933)]'"2 = 0.701.
The Froude number is sufficiently lower than the critical value of 1.0.

Finally, from Figure 6.15 (with 0 = 15 m’/s = 530 cfs), the lining height above the free surface is
1.2t (0.37 m). Also, the freeboard (height of bank) above the free surface is 2.9 ft (0.88 m). Thus, the
design channel depthis y + F = (1.69 + 0.88) = 2.57m ~ 2.6 m (for practicality in field construc-

tion). The bottom width of 0.798 m is increased to 0.8 m for the same reason. The top width of the channel 60
isb+ 2m(y) =08 +2(2)(2.6)=11.2m
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