Chapter 2 Fluid Properties

Ahmad Sana

Department of Civil and Architectural Engineering Sultan Qaboos University Sultanate of Oman Email: sana@squ.edu.om Webpage: http://ahmadsana.tripod.com

Significant learning outcomes

Conceptual Knowledge

- Define density, specific gravity, viscosity, surface tension, vapor pressure, and bulk modulus of elasticity.
- Describe the differences between absolute viscosity and kinematic viscosity.
- Describe how shear stress, viscosity, and the velocity distribution are related.
- Describe how viscosity, density, and vapor pressure vary with temperature and/or pressure.

Procedural Knowledge

- Look up fluid property values from figures, tables; know when and how to interpolate.
- Calculate gas density using the ideal gas law.

2-1 Properties involving mass and weight

- Mass density (ρ) $\rho = \lim_{\Delta \Psi \to 0} \frac{\Delta m}{\Delta \Psi}$
- Specific Weight (γ)

$$\gamma = \rho g$$

- Specific gravity (S)
- $S = \frac{\gamma_{fluid}}{\gamma_{water,4^{\circ}C}} = \frac{\rho_{fluid}}{\rho_{water,4^{\circ}C}}$
- Variation in density

Variation in density with temperature

Specific Gravity of some substances

Substance	SG	
Air	0.0013	
Gasoline	0.7	
Ethyl Alcohol	0.79	
Wood	0.3-0.9	
Ice	0.92	
Water	1.0	
Seawater	1.025	
Blood	1.05	
Bones	1.7-2.0	
Mercury	13.6	

2.2 Ideal gas law

Equation of state for an Ideal Gas

 $p = \rho RT$

- *P*=Absolute pressure
- ρ = mass density

 $R = R_u / M$ (Table A.2)

 R_{μ} = Universal gas constant = 8.314 kJ/kmol.K

M=Molar mass (molecular weight) of the gas

T=Temperature on Kelvin scale, $T(K)=T(^{\circ}C)+273$

At low pressure and high temperature most of the gases of practical importance like air, oxygen, nitrogen, hydrogen, helium, argon, neon, krypton and carbon dioxide can be treated as ideal gases.

2.3 Properties involving thermal energy

• Specific heat, c_p

Amount of energy to increase the temperature by 1K

Internal energy, u

• Enthalpy,
$$h$$
 $h = u + \frac{p}{\rho}$

2.4 Viscosity (cont'd)

Absolute or dynamic viscosity, μ

$$\mu = \frac{\tau}{dV/dy} = \frac{N/m^2}{(m/s)/m} = N.s/m^2$$

Kinematic viscosity, v

$$\nu = \frac{\mu}{\rho} = \frac{N \cdot s / m^2}{kg / m^3} = m^2 / s$$

Temperature

Effect of temperature on viscosity of air and water

Temperature dependency

Viscosity of liquids

$$\mu = Ce^{b/T}$$

C and *b* are empirical constants, *T* is absolute temperature

Sutherland's equation for gases

$$\frac{\mu}{\mu_0} = \left(\frac{T}{T_0}\right)^{3/2} \left(\frac{T_0 + S}{T + S}\right)$$

For air, Sutherland's constant, S = 111 K

CIVL 4046 Fluid Mechanics

EXAMPLE 2.2 CALCULATING VISCOSITY OF LIQUID AS A FUNCTION OF TEMPERATURE

- The dynamic viscosity of water at 20°C is 1.00×10^{-3} N \cdot s/m², and the viscosity at 40°C is 6.53×10^{-4} N \cdot s/m².
- Using Eq. (2.9), estimate the viscosity at 30°C.

Problem Definition

Situation: Viscosity of water is specified at two temperatures.

Find: The viscosity at 30°C by interpolation.

Properties:

a) Water at 20°C, $\mu = 1.00 \times 10^{-3} \text{ N} \cdot \text{s/m}^2$.

b) Water at 40°C, $\mu = 6.53 \times 10^{-4} \text{ N} \cdot \text{s/m}^2$.

Solution

1. Logarithm of Eq. (2.9)

 $\ln \mu = \ln C + b/T$

2. Interpolation

$$-6.908 = \ln C + 0.00341b$$
$$-7.334 = \ln C + 0.00319b$$

3. Solution for $\ln C$ and b $\ln C = -13.51$ b = 1936 (K)

$$C = e^{-13.51} = 1.357 \times 10^{-6}$$

4. Substitution back in exponential equation $\mu = 1.357 \times 10^{-6} e^{1936/T}$

At 30°C

$$\mu = 8.08 \times 10^{-4} \text{ N} \cdot \text{s/m}^2$$

EXAMPLE 2.3 MODELING A BOARD SLIDING ON A LIQUID LAYER

A board 1 m by 1 m that weighs 25 N slides down an inclined ramp (slope = 20°) with a velocity of 2.0 cm/s. The board is separated from the ramp by a thin film of oil with a viscosity of 0.05 N \cdot s/m². Neglecting edge effects, calculate the space between the board and the ramp.

Problem Definition

Situation: A board is sliding down a ramp, on a thin film of oil.

Find: Space (in m) between the board and the ramp.

Assumptions: A linear velocity distribution in the oil.

Properties: Oil, $\mu = 0.05 \text{ N} \cdot \text{s/m}^2$.

Sketch:

Solution

1. Freebody analysis

$$F_{\text{tangential}} = F_{\text{shear}}$$
$$W \sin 20^{\circ} = \tau A$$
$$W \sin 20^{\circ} = \mu \frac{dV}{dy} A$$
2. Substitution of dV/dy as $\Delta V/\Delta y$

$$W\sin 20^\circ = \mu \frac{\Delta V}{\Delta y} A$$

3. Solution for Δy

$$\Delta y = \frac{\mu \Delta VA}{W \sin 20^{\circ}}$$
$$\Delta y = \frac{0.05 \text{ N} \cdot \text{s/m}^2 \times 0.020 \text{ m/s} \times 1 \text{ m}^2}{25 \text{ N} \times \sin 20^{\circ}}$$
$$\Delta y = 0.000117 \text{ m}$$
$$\Delta y = 0.117 \text{ mm}$$

.....

Newtonian versus non-Newtonian fluids

2.5 Bulk modulus of elasticity

For an ideal gas under constant temperature

$$E_v = \rho \frac{dp}{d\rho} = \rho RT = p$$

• For an adiabatic process: $E_v = kp$ $(k = c_p / c_v)$

2.6 Surface Tension

Surface Tension

 $F_{\sigma} = \sigma L$

Surface Tension in different cases

$$F_{\sigma} = \sigma L = pA$$
$$2\pi r\sigma = p\pi r^{2}$$
$$p = \frac{2\sigma}{r}$$

$$F_{\sigma} = \sigma L = pA$$
$$4\pi r\sigma = p\pi r^{2}$$
$$p = \frac{4\sigma}{r}$$

CIVL 4046 Fluid Mechanics

Surface Tension in different cases

(c) Cylinder supported by surface tension (liquid does not wet cylinder)

(d) Ring pulled out of liquid (liquid wets the ring)

$$W = 2F_{\sigma} = 2\sigma L$$

F = ??

Surface Tension of some fluids in air at 1atm and 20°C

Fluid	σ (N/m)	
Mercury	0.440	
Water	0.073	
Glycerin	0.063	
SAE 30 oil	0.035	
Kerosene	0.028	
Soap solution	0.025	
Ethyl Alcohol	0.023	
Gasoline	0.022	
Ammonia	0.021	

EXAMPLE 2.4 CAPILLARY RISE IN A TUBE

To what height above the reservoir level will water (at 20°C) rise in a glass tube, such as that shown in Fig. 2.7, if the inside diameter of the tube is 1.6 mm?

Problem Definition

Situation: A glass tube of small diameter placed in an open reservoir of water induces capillary rise.

Find: The height the water will rise above the reservoir level. Sketch: See Figure 2.7.

Properties: Water (20 °C), Table A.5, $\sigma = 0.073 \text{ N/}m$; $\gamma = 9790 \text{ N/m}^3$.

Solution

1. Force balance: Weight of water (down) is balanced by surface tension force (up).

$$F_{\sigma,z} - W = 0$$

$$\sigma \pi d \cos \theta - \gamma (\Delta h) (\pi d^2/4) = 0$$

Because the contact angle θ for water against glass is so small, it can be assumed to be 0° ; therefore $\cos \theta \approx 1$. Therefore:

$$\sigma \pi d - \gamma (\Delta h) \left(\frac{\pi d^2}{4} \right) = 0$$

2. Solve for Δh :

$$\Delta h = \frac{4\sigma}{\gamma d} = \frac{4 \times 0.073 \text{ N/m}}{9790 \text{ N/m}^3 \times 1.6 \times 10^{-3} \text{ m}} = 18.6 \text{ mm}$$

2.7 Vapor Pressure

Vapor pressure of a liquid is defined as the pressure, at a given temperature, it will boil.

Vapor pressure increases with temperature.

Vapor pressure of water is shown in the table.

Temperature, °C	p_{v} , kPa
-10	0.26
-5	0.403
0	0.611
5	0.872
10	1.23
20	2.34
30	4.25
40	7.38
50	12.35
100	101.3
200	1554
300	8581