Chapter 1 Introduction

Ahmad Sana

Department of Civil and Architectural Engineering Sultan Qaboos University Sultanate of Oman Email: sana@squ.edu.om Webpage: http://ahmadsana.tripod.com

Significant learning outcomes

Conceptual Knowledge

Describe fluid mechanics.

Contrast gases and liquids by describing similarities and differences.

>Explain the continuum assumption.

Procedural Knowledge

Use primary dimensions to check equations for dimensional homogeneity.

Apply the grid method to carry and cancel units in calculations.

Explain the steps in the "Structured Approach for Engineering Analysis"

Table 1.1 COMPARISON OF SOLIDS, LIQUIDS, AND GASES				
Attribute	Solid	Liquid	Gas	
Typical Visualization				
Macroscopic Description	Solids hold their shape; no need for a container	Liquids take the shape of the container and will stay in open container	Gases expand to fill a closed container	
Mobility of Molecules	Molecules have low mobility because they are bound in a structure by strong intermolecular forces	Liquids typically flow easily even though there are strong intermolecular forces between molecules	Molecules move around freely with little interaction except during collisions; this is why gases expand to fill their container	
Typical Density	Often high; e.g., density of steel is 7700 kg/m ³	Medium; e.g., density of water is 1000 kg/m^3	Small; e.g., density of air at sea level is 1.2 kg/m^3	
Molecular Spacing	Small—molecules are close together	Small—molecules are held close together by intermolecular forces	Large—on average, molecules are far apart	
Effect of Shear Stress	Produces deformation	Produces flow	Produces flow	
Effect of Normal Stress	Produces deformation that may associate with volume change; can cause failure	Produces deformation associated with volume change	Produces deformation associated with volume change	
Viscosity	NA	High; decreases as temperature increases	Low; increases as temperature increases	
Compressibility	Difficult to compress; bulk modulus of steel is 160×10^9 Pa	Difficult to compress; bulk modulus of liquid water is 2.2×10^9 Pa	Easy to compress; bulk modulus of a gas at room conditions is about 1.0×10^5 Pa	

1-2 The continuum assumption

CIVL 4046 Fluid Mechanics

1-3 Dimensions, units and resources

Table 1.2	PRIMARY DIMENSIONS	
Dimension	Symbol	Unit (SI)
Length	L	meter (m)
Mass	M	kilogram (kg)
Time	Т	second (s)
Temperature	θ	kelvin (K)
Electric current	i	ampere (A)
Amount of light	C	candela (cd)
Amount of matter	N	mole (mol)

1-4 Topics in dimensional analysis

• Dimensionless groups

Mach Number (Ma) = Speed of flow / Speed of Sound

Speed of sound= 346 m/s = 1246 km/h

- Subsonic (Ma<1)</p>
- Sonic (Ma=1)
- Supersonic (Ma>1)
- >Hypersonic (Ma >>1)

Concorde, Speed : 2.04 Mac Highly uneconomical, therefore grounded in 2003.

1-4 Topics in dimensional analysis

Dimensional homogeneity

$$s = \frac{gt^{2}}{2} + v_{0}t + s_{0}$$
$$[L] = [LT^{-2}]T^{2} + [LT^{-1}]T] + [L] = [L]$$

EXAMPLE 1.1 PRIMARY DIME!SIONS OF THE REYNOLDS NUMBER

Show that the Reynolds number, given in Eq. (1.4), is a dimensionless group. *Problem Definition*

Situation: The Reynolds number is given by $Re = (\rho VL)/\mu$.

Find: Show that Re is a dimensionless group.

Plan

- 1. Identify the variables by using Table A.6.
- 2. Find the primary dimensions by using Table A.6.
- 3. Show that Re is dimensionless by canceling primary dimensions.

Solution

Variables and primary dimensions

- mass density, $\rho = [M/L^3]$
- velocity, V = [L/T]
- Length, L = [L]
- viscosity, $\mu = [M/LT]$

Cancel primary dimensions:

$$\left[\frac{\rho VL}{\mu}\right] = \left[\frac{M}{L^3}\right] \left[\frac{L}{T}\right] \left[L\right] \left[\frac{LT}{M}\right] = \left[-\right]$$

Since the primary dimensions cancel, the Reynolds number $(\rho VL)/\mu$ is a dimensionless group.

1-4 Topics in dimensional analysis

Unity conversion ratios

$$1.0 = \frac{1 \text{m/s}}{3.6 \text{km/h}}$$
 $1.0 = \frac{1 \text{N}}{0.102 \text{kgf}}$

• The Grid method

$$P = F \times V = \begin{vmatrix} 2\text{kgf} & 30\text{km/h} & 1.0\text{m/s} & 1.0\text{N} & \text{W.s} \\ \hline & & 3.6\text{km/h} & 0.102\text{kgf} & \text{N.m} \\ = 163.4\text{W} \end{vmatrix}$$

Table 1.5 AFFEFING THE GRID METHOD (TWO EXAMPLES)				
Process Step	Example 1	Example 2		
	Situation: Convert a pressure of 2.00 psi to pascals.	Situation: Find the force in newtons that is needed to accelerate a mass of 10 g at a rate of 15 ft/s ² .		
Step 1. Problem: Write the term or equation. Include numbers and units.	p = 2.00 psi	F = ma $F (N) = (0.01 \text{ kg})(15 \text{ ft/s}^2)$		
Step 2. Conversion Ratios: Look up unit conversion formula(s) in Table F.1 and represent these as unity conversion ratios.	$1.0 = \frac{1 \text{ Pa}}{1.45 \times 10^{-4} \text{ psi}}$	$1.0 = \frac{1.0 \text{ m}}{3.281 \text{ ft}}$ $1.0 = \frac{\text{N} \cdot \text{s}^2}{\text{kg} \cdot \text{m}}$		
Step 3. Algebra: Multiply variables and cancel units. Fix any errors.	$p = [2.00 \text{ psi}] \left[\frac{1 \text{ Pa}}{1.45 \times 10^{-4} \text{ psi}} \right]$	$F = \begin{bmatrix} 0.01 \text{ kg} \end{bmatrix} \begin{bmatrix} 15 \text{ ft} \\ s^2 \end{bmatrix} \begin{bmatrix} 1.0 \text{ m} \\ 3.281 \text{ ft} \end{bmatrix} \begin{bmatrix} N \cdot s^2 \\ \text{kg} \cdot m \end{bmatrix}$		
Step 4. Calculations: Perform the indicated calculations. Round the answer to the correct number of significant figures.	p = 13.8 kPa	F = 0.0457 N		

Table 1.3 APPLYING THE GRID METHOD (TWO EXAMPLES)

What To Do	Why Do This?	Typical Actions		
Problem Definition: This involves figuring out what the problem is, what is involved, and what the end state (i.e., goal state) is. Problem definition is done before trying to solve the problem.	 To visualize the situation (present state). To visualize the goal (end state). 	 Read and interpret the problem statement. Look up and learn unfamiliar knowledge. Document your interpretation of the situation. Interpret and document problem goals. Make an engineering sketch. Document main assumptions. Look up fluid properties; document sources. 		
Plan: This involves figuring out a solution path or "how to solve the problem." Planning is done prior to jumping into action.	To find an easy way to solve the problem.Saves you time.	 Generate multiple ideas for solving the problem Identify useful equations from Table F.2. Inventory past solutions. Analyze equations using a term-by-term approach. Balancing number of equations with number of unknowns. Make a step-by-step plan. 		
Solution: This involves solving the problem by executing the plan.	• To reach the problem goal state.	 Use computer programs. Perform calculations. Double-check work. Carry and cancel units. 		
Review: This involves validating the solution, exploring implications of the solution, and looking back to learn from the experience you just had.	 Gain confidence that your answer can be trusted. Increases your understanding. Gain ideas for applications. To learn. 	 Check the units of answer. Check that problem goals have been reached. Validate the answer with a simpler estimate. Write down knowledge that you want to remember. List "what worked" and "ideas for improvement." 		

Table 1.4 STRUCTURED APPROACH FOR ENGINEERING ANALYSIS