Solution to Assignment No.4

11-5. a) $\hat{y} = 13.3202 + 3.32437 x$ b) $\hat{y} = 13.3202 + 3.32437(7.5) = 38.253$ c) $\hat{y} = 13.3202 + 3.32437(5.8980) = 32.9273$ $\hat{y} = 32.9273$ $e = y - \hat{y} = 30.9 - 32.9273 = -2.0273$

d) All the points would lie along a 45 degree line. That is, the regression model would estimate the values exactly. At this point, the graph of observed vs. predicted indicates that the simple linear regression model provides a reasonable fit to the data.

11-6.

 $\hat{y} = -6.3355 + 9.20836x$ b) $\hat{y} = -6.3355 + 9.20836(55) = 500.124$ c) If monthly temperature increases by 1° F, \hat{y} increases by 9.20836. d) $\hat{y} = -6.3355 + 9.20836(47) = 426.458$ $\hat{y} = 426.458$ $e = y - \hat{y} = 424.84 - 426.458 = -1.618$ 11-7. a) T 12.83 P 0.000 Predictor Coef StDev Constant 33.535 2.614 0.01663 -0.03540 0.047 х -2.13S = 3.660R-Sq = 20.1% R-Sq(adj) = 15.7% Analysis of Variance P 0.047 Source DF SS MS F 60.69 4.53 60.69 Regression 1 18 241.06 301.75 13.39 Error Total 19 $\hat{\sigma}^2 = 13.392$ $\hat{y} = 33.5348 - 0.0353971x$ b) $\hat{y} = 33.5348 - 0.0353971(150) = 28.226$ c) $\hat{y} = 29.4995$ $e = y - \hat{y} = 31.0 - 29.4995 = 1.50048$ a)

11-9.

Yes, a linear regression would seem appropriate, but one or two points might be outliers.

Predictor Constant x	Coef -10.132 0.17429	SE Coef 1.995 0.02383	т 5 –5.08 7.31	P 0.000 0.000	
S = 1.318	R-Sq =	74.8%	R-Sq(adj) =	73.4%	
Analysis of V	<i>Variance</i>				
Source	DF	SS	MS	F	P
Regression	1	92.934	92.934	53.50	0.000
Residual Erro Total	or 18 19	31.266 124.200	1.737		

b)
$$\hat{\sigma}^2 = 1.737$$
 and $\hat{y} = -10.132 + 0.17429x$
c) $\hat{y} = 4.68265$ at $x = 85$

11-12. a)

Yes, a simple linear regression (straight-line) model seems plausible for this situation.

Coef 2625.39 Predictor StDev т Ρ 0.000 57.90 Constant 45.35 х -36.962 2.967 -12.46 0.000 S = 99.05 R-Sq = 89.6% R-Sq(adj) = 89.0% Analysis of Variance Source DF SS MS F Ρ 1522819 176602 1522819 9811 Regression 1 155.21 0.000 Error 18 19 1699421 Total b) $\hat{\sigma}^2 = 9811.2$ $\hat{y} = 2625.39 - 36.962x$ c) $\hat{y} = 2625.39 - 36.962(20) = 1886.15$

d) If there were no error, the values would all lie along the 45° line. The plot indicates age is reasonable regressor variable.