Chapter 19

Numerical Methods for
Differential Equations



From Chap. 1 we know that an ODE of the first order is of the form F(x, v, ¥") = 0 and
can often be written in the explicit form " = f(x, v). An initial value problem for this
equation is of the form

(1) Y =y, &) = Yo

where xq and y, are given and we assume that the problem has a unique solution on some
open interval ¢ < x < b containing x,.

In this section we shall discuss methods of computing approximate numeric values of
the solution y(x) of (1) at the equidistant points on the x-axis

Xy = Xo + A, X9 = Xog + 2Ah, Xq = Xog + 3A,

where the step size /1 is a fixed number, for instance, 0.2 or 0.1 or 0.01, whose choice we
discuss later in this section. Those methods are step-by-step methods, using the same
formula in each step. Such formulas are suggested by the Taylor series

! ;?2 r
(2) vix + h) = vx) + hy (x) + > y ") + -+ -



For a small i the higher powers 4% h*, - - - are very small. This suggests the crude
approximation
vix + h) = yx) + h }*’(-r)

= y(x) + hf(x, y)

(with the second line obtained from the given ODE) and the following iteration process.
[n the first step we compute

Y1 = Yo T lf(Xo. Yo)
which approximates y(x;) = v(xo + /). In the second step we compute
Yo = y1 + hf(xy, y1)

which approximates v(xg) = v(xy + 2/1), etc., and in general

(3) Vo1 = Vo + B V) (n=0,1,).



This is called the Euler method or the Euler—Cauchy method. Geometrically it is an
approximation of the curve of y(x) by a polygon whose first side is tangent to this curve
at Xo (See Fig. 417)
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Fig. 417. Euler method



This crude method is hardly ever used in practice, but since it is simple, it nicely explains
the principle of methods based on the Taylor series.

Taylor’s formula with remainder has the form
Y + 1) = yx) + y'(x) + 3h*™"(

(where x = & = x + h). It shows that in the Euler method the truncation error in each
step or local truncation error is proportional to /%, written O(h?), where O suggests order
(see also Sec. 20.1). Now over a fixed x-interval in which we want to solve an ODE the
number of steps is proportional to 1/4. Hence the foral error or global error is proportional
to h?(1/h) = h'. For this reason, the Euler method is called a first-order method. In
addition, there are roundoff errors in this and other methods, which may affect the
accuracy of the values yq, yg, * - - more and more as n increases, as we shall see.



Table 19.1 Euler Method Applied to (4) in Example 1 and Error

Exact
n X, Vi 0.2(x,, +v,) Values Error €,
0 0.0 0.000 0.000 0.000 0.000
| 0.2 0.000 0.040 0.021 0.021
2 0.4 0.040 0.088 0.092 0.052
3 0.6 0.128 0.146 0.222 0.094
4 0.8 0.274 0.215 0.426 0.152
5 1.0 0.489 0.718 0.229
Euler Method
Apply the Euler method to the following initial value problem, choosing i = 0.2 and computing vy, - * -, vs:
(4) v =x+v, yv(0) = 0.

Solution. Here f(x. v) = x + v; hence f(x,,. V) = X, + V. and we see that (3) becomes

Vooe1 = Yy T 02(x, + vy).



Table19.1  shows the computations, the values of the exact solution
xr
vix) =e” —x — |
obtained from (4) in Sec. 1.5, and the error. In practice the exact solution is unknown, but an indication of the

accuracy of the values can be obtained by applying the Euler method once more with step 24 = 0.4, letting v,,*
denote the approximation now obtained, and comparing corresponding approximations. This computation is:

X, V¥ 04(x, +v,) y,, in ' Table 19.1 Difference y,, — v,,*
0.0 0.000 0.000 0.000 0.000
0.4 0.000 0.160 0.040 0.040
0.8 0.160 0.274 0.114

Let €, and €, be the errors of the computations with i and 2h, respectively. Since the error is of order h?,
in a switch from £ to 24 it is multiplied by 22 = 4, but since we need only half as many steps as before, it

will be multiplied only by 4/2 = 2. Hence €, = 2¢€, so that the difference is €, — €, = 2¢, — €, = €,.
Now v = v, + €, = v, + €, by the definition of error: hence €,* — €, = v,, — v,,* Indicates €,
qualitatively. In our computations, vo — vo™ = 0.04 — 0 = 0.04 (actual error 0.052, see Taple19.1 ) and

Vg — Va¥ = 0274 — 0.160 = 0.114 (actually 0.152).



In the improved Euler method or improved Euler—Cauchy method (sometimes also
called Heun method). in each step we compute first the auxiliary value

(78) 1'n—i—l - j"":ri. + hf(-rn* "n)
and then the new value

. e 1 R . . -
(7b) Yn+1 = Yn + 2 h U(-"'-ne j"’n) + f(-in—kl- .1‘"'n+1)]'

This method has a simple geometric interpretation. In fact, we may say that in the
interval from x,, to x,, + %h we approximate the solution y by the straight line through
(X, v,,) with slope f(x,, v,), and then we continue along the straight line with slope
f(Xy1. V) until x reaches x,,, 1.

The improved Euler—Cauchy method is a predictor—corrector method, because in each
step we first predict a value by (7a) ind then correct it by (7b)

Error of the Improved Euler Method. The local error is of order h* and the global
error of order h?, so that the method is a second-order method.



In algorithmic form, using the notations ky = hf(x,, v,)ir (7a) and ks = hf(x,. 1, Vi 1)
in (7/b) we can write this method as shown in Table 19.2
19.2 Improved Euler Method (Heun’s Method)

ALGORITHM EULER (f, xqg, vg, 1. N)

B . . - . e !
This algorithm computes the solution of the initial value problem vy = f(x, v), v(xg) = vg
at equidistant points x;y = xo + h, X9 = xo + 2h, -+ -, xy = Xo + Nh; here f is such
that this problem has a unique solution on the interval [xg, xy] (See Sec 1.9 .

INPUT: Initial values xg. vg, step size /i, number of steps N

OUTPUT: Approximation y,,, to the solution v(x,, ;) at x,,,1 = xo + (n + DA,
wheren = 0,-- - . N — 1

Forn=0,1,---,N— ldo

X1 = X, T A4

ki = hf(xy,. vp)

ko = hf(x, 1, Vn T k1)
Va1 = Vo + 2k + ko)
OUTPUT x,,1. Vput1

End
Stop
End EULER



Example 2
Improved Euler Method

Apply the improved Euler method to the initial value problem (4), choosing i = 0.2, as before.

Solution. For the present problem we have in Table 19.2

ky = 02(x, + v,)
ke = 0.2(x, + 02 + v, + 0.2(x,, + v,.))

0.2
Yn+1 = Yn T = (22x, + 2.2y, + 0.2) =y, + 0.22(x,, + yy,) + 0.02.

Table 19.3  shows that our present results are more accurate than those in Example [; see also Table 19.6
Table 19.3 Improved Euler Method Applied to (4) and Error

. N . 0.22(x,, + v,) Exact Values Error
" o + 0.02 (4D)

0 0.0 0.0000 0.0200 0.0000 0.0000
l 0.2 0.0200 0.0684 0.0214 0.0014
2 0.4 0.0884 0.1274 0.0918 0.0034
3 0.6 0.2158 0.1995 0.2221 0.0063
4 0.8 0.4153 0.2874 0.4255 0.0102
5 1.0 0.7027 0.7183 0.0156



A method of great practical importance and much greater accuracy than that of the
improved Euler method is the classical Runge—Kutta method of fourth order, which we
call briefly the Runge-Kutta method.! It is shown in Table 19.4 |. We see that in each
step we first compute four auxiliary quantities ky, kg, k5, k4 and then the new value v, , 1.
The method is well suited to the computer because it needs no special starting procedure,
makes light demand on storage, and repeatedly uses the same straightforward
computational procedure. It is numerically stable.

Note that if f depends only on x, this method reduces to Simpson’s rule of integration
Sec. 17.3 ). Note further that kq, - - -, k4 depend on n and generally change from step to
step.



Table 19.4  Classical Runge—Kutta Method of Fourth Order

ALGORITHM RUNGE-KUTTA (f. xo. Vo. 1. N).

. . . ~ o s !
This algorithm computes the solution of the initial value problem y = f(x, v), v(xg) = vg
at equidistant points

}Ll = _}.0 + h.. ,1‘2 — k{:} + 2h‘ SR -}‘LI\T — -}»‘0 + _1"\"7!.-').

here f is such that this problem has a unique solution on the interval |x,, xp] (see Sec. 1.7).

INPUT: Function f. initial values xg. vg, step size i, number of steps N

OUTPUT: Approximation y, .y to the solution v(x,, ;) at x,,,; = Xo + (n + 1)h,
wheren =0, 1,-- -, N — |



Forn =0,1,---,N—1do:

ki = hf(x,.v,)

ko = hf(x,, + %h. v, + %kl)

ks = hf(x, + 3h, v, + 2ks)

kg = hf(x,, + h, vy, + kg)

Xpi1 =X, T h

Vi1 = Vn + alky + 2ky + 2kg + ky)
OUTPUT x,,, 1, Vi1

End
Stop
End RUNGE-KUTTA



Example 3

Classical Runge—Kutta Method

Apply the Runge—Kutta method to the initial value problem (4) in Example 1, choosing i = 0.2, as before, and
computing five steps.

Solution. For the present problem we have f(x, v) = x + v. Hence
ki = 02(x,, + v,). ko = 02(x,, + 0.1 + v,, + 0.5kq),

ks = 02(x, + 0.1 + v, + 0.5kg),  kg= 02(x,, + 02 + v, + kg).

Table 21.5 shows the results and their errors, which are smaller by factors 102 and 10% than those for the two
Euler methods. See also Table 19.6 We mention in passing that since the present ky, - - -, k4 are simple,

operations were saved by substituting &y into ko, then ko Into k5. etc.; the resulting formula is shown in Column
4 of Table 19.5



Table 19.5
n X,
0 0.0
| 0.2
2 0.4
3 0.6
4 0.8
5 1.0

< Tl

0

0.021 400
0.091 818
0.222 107
0.425 521
0.718 251

Runge—Kutta Method Applied to (4)

0.2214(x,, + v,)

+ 0.0214

0.021 400
0.070 418
0.130 289
0.203 414
0.292 730

Exact Values (6D)

y=¢e"—x— 1

0.000 000
0.021 403
0.091 825
0.222 119
0.425 541
0.718 282

105 X Error
Df .\’".i"b

0

%)



Table 19.6 Comparison of the Accuracy of the Three Methods Under Consideration
in the Case of the Initial Value Problem (4), with h = 0.2

Error
X y=e"—x—1 Euler Improved Euler Runge—Kutta
( Table 19.1 ) ( Table 19.3 ) (' Table 19.5
0.2 0.021 403 0.021 0.0014 0.000 003
0.4 0.091 825 0.052 0.0034 0.000 007
0.6 0.222 119 0.094 0.0063 0.000 011
0.8 0.425 541 0.152 0.0102 0.000 020

[.0 0.718 282 0.229 0.0156 0.000 031



19.2 Multistep methods

In a one-step method we compute vy, ,; using only a single step, namely, the previous
value v,,. One-step methods are ‘“‘self-starting,” they need no help to get going because
they obtain y; from the initial value y,, etc. All methods in Sec. 21.1 are one-step.

[n contrast, a multistep method uses in each step values from two or more previous
steps. These methods are motivated by the expectation that the additional information will
increase accuracy and stability. But to get started, one needs values, say, yg, ¥1. Vo, V5 1D
a 4-step method, obtained by Runge—Kutta or another accurate method. Thus, multistep
methods are not self-starting. Such methods are obtained as follows.

We substitute this into (4) and collect terms. This gives the multistep formula of the
Adams-Bashforth method of fourth order

_ h _
(5) Vn+1 = Yn + ﬂ (SS)LH o ngn—l + 37f-n—2 o gf-n—?,)-

—

[t expresses the new value vy, ; [approximation of the solution y of (1) at x,,,¢] in terms
of 4 values of f computed from the y-values obtained in the preceding 4 steps. The local
truncation error is of order A°, as can be shown, so that the global error is of order h?:
hence (5) does define a fourth-order method.



_ R ) _
(6) Vn+1 = Yn + j 1)3(-1-) dx = Vn + a (gfn+1 + lgfn o Sf-n—l + f—n—z)-

x?l

This is usually called an Adams—Moulton formula. It is an implicit formula because
fne1 = f(Xi1, Ve1) appears on the right, so that it defines vy, only implicitly, in
contrast to (5), which 1s an explicit formula, not involving y,,, 1 on the right. To use (6)
we must predict a value y¥ ¢, for instance, by using (5), that is,

o ) h .
(73) “'S+1 = Vn + a (SS)LR o ng-n—l + 3?,f-n—2 - gfn—?))

The corrected new value v, ; is then obtained from (6) with f,,,; replaced by
1= f(xX,11. Vi 1) and the other f’s as in (6); thus,

| h } ‘ ‘
(Tb) Yn+1 = Yn + a (gf;;—F]. + lgfn o 5Jt’n.—l + jn.—:Z)-



19.4 Methods for elliptic partial differential equations

A PDE is called quasilinear if it is linear in the highest derivatives. Hence a second-
order quasilinear PDE in two independent variables x, y is of the form

(1) Ay, + 2buy,, + cuy, = F(X, ¥, U, Uy, Uy).

vy

i 1s an unknown function of x and y (a solution sought). F is a given function of the
indicated variables.
Depending on the discriminant ac — b2, the PDE (1) is said to be of

elliptic type if ac— b% >0 (example: Laplace equation)
parabolic type if ac — b? = 0 (example: heat equation)

hyperbolic type if ac — b < 0 (example: wave equation).



[n this section we consider the Laplace equation

(2) Viu = u,, + Uyy = 0
and the Poisson equation

(3) Viu =u,, + Uy, = f(x,y).

These are the most important elliptic PDEs in applications. To obtain methods of numeric
solution, we replace the partial derivatives by corresponding difference quotients, as
follows. By the Taylor formula,

(@) wu(x + hyy) = ulx,v) + huylx, y) + %hzum(,x‘, y) + %hgumr(x, y) + -

(4) 1,2 14,3
(b) ulx — h,y) = ulx,y) — huy(x, v) + 507U, (x, v) — MU (X, v) + - -



We subtract (4b) from (4a), neglect terms in h3, h*, - - -, and solve for u,. Then

1
(5a) Ux, y) = o lu(x + h, y) — u(x — h, y)|.
1

Similarly,

u(x, y + k) = u(x, y) + kuy(x, ¥) + 5k%u,,(x, y) + - -
and

C oy — — S ) — oy 17,2 - c e
ux, y — k) = ulx, y) — kuy,(x, y) + 5k%u,,(x, y) + :
By subtracting, neglecting terms in k2, k%, - - -, and solving for u, we obtain

1
(5b) U, (x,y) = Ey lu(x, vy + k) — ulx, y — k).



We now turn to second derivatives. Adding (4a) and (4b) and neglecting terms in
h*, h°, - - -, we obtain ux + h,y) + ulx — h,y) = 2u(x, y) + hzum(-r, y). Solving for
u,.., we have

1

(6a) Uppl(X, V) = e [u(x + h,v) — 2u(x,y) + u(x — h, y)|.
1

Similarly,

> 1

(6b) Uy (X, V) = el lu(x, y + k) — 2u(x, y) + u(x,y — k).

We shall not need (see Prob. 1)

1
Lo (X, V)= — |u(x + h,yv+ k) —ulx—hyv+k
(60) Uy (X, V) o L ( ) ) — u( ) )
—u(x+ h,v—4k +ulx—hv— k).

Figure 452a shows the points (x + /2, v), (x — A, v),* - - In (5) and (6).



We now substitute (6a) and (6b) into the Poisson equation (3), choosing kK = /1 to obtain
a simple formula:

(7) u(x + h,y) +uCe, y+ h) + ulx — hy) + ulx.y — h) — 4u(x, ¥) = hi*f(x, y).

This is a difference equation corresponding to (3). Hence for the Laplace equation (2)
the corresponding difference equation is

(8) ux + h,y) +ux, v+ h) +ulx — hy)+ ulx, vy — hy — 4u(x, v) = 0.

h is called the mesh size. Equation (8) relates u at (x, y) to « at the four neighboring points
shown in Fig. 452b. It has a remarkable interpretation: u at (x, y) equals the mean of the
values of u at the four neighboring points. This is an analog of the mean value property
of harmonic functions (Sec. 18.6).

Those neighbors are often called E (East), N (North), W (West), S (South). Then
Fig. 452b becomes Fig. 452¢ and (7) is

(7%) wE) + u(N) + u(W) + u(S) — 4u(x, v) = h%f(x, v).



(x,y—Fk)

(a) Points in (5) and (6)

(x, v+ h)

h
h h

(x+h,y) (x—h,v) O (x+h, v w

{x,v)

h

(x,y-h)

(b) Points in (7) and (8)
Points and notation in (5)—(8) and (7%)

A.r

h
h h
O
Lx, )
h
S

(c) Notation in (77)



Dirichlet Problem

In numerics for the Dirichlet problem in a region R we choose an /1 and introduce a square
grid of horizontal and vertical straight lines of distance /i. Their intersections are called
mesh points (or lattice points or nodes). See Fig. 453.

Then we approximate the given PDE by a difference equation [(8) for the Laplace equation],
which relates the unknown values of « at the mesh points in R to each other and to the given
boundary values (details on p. 913). This gives a linear system of algebraic equations. By
solving it we get approximations of the unknown values of « at the mesh points in R.

We shall see that the number of equations equals the number of unknowns. Now comes
an important point. If the number of internal mesh points, call it p, is small, say, p << 100,
then a direct solution method may be applied to that linear system of p < 100 equations
in p unknowns. However, if p is large, a storage problem will arise. Now since each
unknown u is related to only 4 of its neighbors, the coefficient matrix of the system is a
sparse matrix, that is, a matrix with relatively few nonzero entries (for instance, 500 of
10000 when p = 100). Hence for large p we may avoid storage difficulties by using an
iteration method, notably the Gauss—Seidel method (Sec. 20.3), which in PDEs is also
called Liebmann’s method. Remember that in this method we have the storage
convenience that we can overwrite any solution component (value of ) as soon as a “new”
value 1s available.



(10) Pi; = (ih, jh), u; = u(ih, jh).

Region in the xy-plane covered by a grid of mesh h,
also showing mesh points P,, = (h, h), - - -, P; = (ih, jh), - - -

With this notation we can write (8) for any mesh point P;; in the form

(11) Hi‘Fl,j + ”i,j—!—l + ”i—l,j -+ L’i‘(?:!j_]_ - 4”2'3' = ().



Laplace Equation. Liebmann’s Method

The four sides of a square plate of side 12 cm made of homogeneous material are kept at constant temperature
0°C and 100°C as shown in Fig. 454a. Using a (very wide) grid of mesh 4 cm and applying Liebmann’s method
(that 1s, Gauss—Seidel iteration), find the (steady-state) temperature at the mesh points.

Solution. 1n the case of independence of time, the heat equation (see Sec. 10.8)
_ 2
Uy = CT(Uyy T Uyy)
reduces to the Laplace equation. Hence our problem is a Dirichlet problem for the latter. We choose the grid

shown in Fig. 454b and consider the mesh points in the order Py, Py, P19, Pag. We use (11) and, in each
equation, take to the right all the terms resulting from the given boundary values. Then we obtain the system

_4£f11 + a7 + 19 = —200
11 — 41’.!21 + oo = —200
(12)
iy — dit19 + g = —100
laq + 19 — 4H22 = —100.
In practice, one would solve such a small system by the Gauss elimination, finding ty; = usqy = 87.5,

19 = Ugg = 62.5.



More exact values (exact to 3S) of the solution of the actual problem [as opposed to its model (12)] are 88.1
and 61.9, respectively. (These were obtained by using Fourier series.) Hence the error is about 1%, which is
surprisingly accurate for a grid of such a large mesh size h. If the system of equations were large, one would
solve 1t by an indirect method, such as Liebmann’s method. For (12) this is as follows. We write (12) in the
form (divide by —4 and take terms to the right)

11 = 0.25u97 + 025115 + 50
o1 = 0.25114 + 0.25199 + 50
t1s = 0.25114 + 0.25u99 + 25
oy = 0.25u97 + 0.25u19 + 25,

These equations are now used for the Gauss—Seidel iteration. They are identical with (2) in Sec. 20.3. where
111 = X{1. Upq] = X9, U1p = X3, Uss = X4, and the iteration is explained there, with 100, 100, 100, 100 chosen
as starting values. Some work can be saved by better starting values, usually by taking the average of the
boundary values that enter into the linear system. The exact solution of the system is w17 = gy = 87.5,
19 = Ugg = 62.5, as you may verify.
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(a) Given problem

(b) Grid and mesh points

Example 1



Mixed Boundary Value Problem for a Poisson Equation
Solve the mixed boundary value problem for the Poisson equation
2 — fr vy = 17vv
VU = ity + ttyy, = f(x, y) = 12x)

shown in Fig. 457a.

o 1= O 23
Y uw = 6x
v/ P, P, P,
1.0 1O w =0 xrs = BXH,” —6u=3
=3y P. P P
R 05 0 Lo et e
U = 0/3'
Pll:l P,_I:I
OD 1.6 =« 0 %=0 Tu=0
0 0.5 1.0
u=0
(a) Region R and boundary values (b) Grid {h =0.5)

Mixed boundary value problem in Example 1



Solution. We use the grid shown in Fig. 457b, where 1 = 0.5. We recall that (7) in Sec. 21.4 has the right
side hz__ﬂ’.\'. V) = 0.52 - 12xy = 3xy. From the formulas « = 3\‘3 and u,, = 6x given on the boundary we compute
the boundary data

HH]_E H”]_Z . {:J.sz Hffzz . _
(]} H31 = 0.37:}. ng = 3.. } = , 6 - s ; = , =61 = 6.
an iy an ay

I
L]
=
N

I
s

P4 and Py, are internal mesh points and can be handled as in the last section. Indeed, from (7). Sec. 21.4, with

h? = 0.25 and h2f(x. v) = 3xy and from the given boundary values we obtain two equations corresponding to
P17 and Pyq. as follows (with —0 resulting from the left boundary).

n
—
Mo [
I
=
I
=
|
N

(2a)
— 0375 = 1.125

Mo =

”11 — 4H21 + sz = ]2(] * 05} -

The only difficulty with these equations seems to be that they involve the unknown values ;5 and o9 of i at
P15 and Pyo on the boundary, where the normal derivative u,, = du/dn = du/dy i1s given, instead of u: but we
shall overcome this difficulty as follows.

We consider Pyg and Pos. The idea that will help us here is this. We imagine the region R to be extended
above to the first row of external mesh points (corresponding to v = 1.5). and we assume that the Poisson
equation also holds in the extended region. Then we can write down two more equations as before (Fig. 457b)



”11 — 4ff12 + sz + ff13 =1.5—-0=1.5

(2b)

gy + tyg — 4ilge + tgg = 3 — 3 = 0.
On the right, 1.5 is 12xvAZ at (0.5, 1) and 3 is 12xvA2 at (1, 1) and O (at Pys) and 3 (at P3s) are given boundary
values. We remember that we have not yet used the boundary condition on the upper part of the boundary of
R, and we also notice that in (2b) we have introduced two more unknowns i3, tto3. But we can now use that
condition and get rid of uy3. Usg by applying the central difference formula for du/dy. From (1) we then obtain

(see Fig. 457b)

('Hflz g — 11
3= —— = 3 = Uy3 — Uqq. hence tyg = 77 + 3
o 2h
- Jugy g3 — Uz |
6 = PR o = lgg — Ugq, hence gz = gy + O.

Substituting these results into (2b) and simplifying, we have

2”11 — 45{12 + sz =1]15—3=—-1.5

2Ugy + Uyg — Higg = 3 — 3 — 6 = —0,

Together with (2a) this yields, written in matrix form,



[ —4 ] I 07 [uyy] [075 7 [ 075 7
I —4 0 1| | uy [.125 1.125
2 D _—]- ] le ]‘5 - 3 _]15

L D 2 ] _4_ _sz_ _O - 6 ] __6 |

(The entries 2 come from uy5 and ugg, and so do —3 and —6 on the right). The solution of (3) (obtained by
Gauss elimination) is as follows; the exact values of the problem are given in parentheses.

15 = 0.866 (exact 1) oe = 1.812  (exact 2)

7 = 0.077  (exact 0.125) sy = 0.191  (exact 0.25).



\Y5

Curved boundary C of a region R, a mesh point O near C, and neighbors A, B, P, Q

‘ 2 u Ug u u (a + D)u
(5) Vi ~ — a4 E 4 E 4 02
) h a(l + a) b(1 + b) 1 + a 1 + b ab
For example, if a = 3, b = 3, instead of the stencil (see Sec. 21.4)
8 B r 4 =
! 3
11 —4 ¢ we now have < % —4 % &
2
\. 1 ) \. 3 )

because 1/[a(l + a)] = %. etc. The sum of all five terms still being zero (which is useful
for checking).



Using the same ideas, you may show that in the case of Fig. 459.

i u u u ap + bg
A n B P Q 4] { " :|

. 2
6) Viuy~ — + + '
ata + p) bb+q) plp+ a q(g + D) abpq

h?
a formula that takes care of all conceivable cases.

o B

bh
ph 0O «ah

qgh
©Q
Neighboring points A, B, P, Q of a
mesh point O and notations in formula (6)



Dirichlet Problem for the Laplace Equation. Curved Boundary

Find the potential « in the region in Fig. 460 that has the boundary values given in that figure: here the curved
portion of the boundary is an arc of the circle of radius 10 about (0, 0). Use the grid in the figure.

\ . . . - . . - - 3
Solution. u is a solution of the Laplace equation. From the given formulas for the boundary values « = x°,
. . . . -

u =512 — 24y~ - - - we compute the values at the points where we need them; the result is shown in the figure.

For Pq1 and P15 we have the usual regular stencil, and for Py and Pse we use (6), obtaining

[ 1 ) [ 0.5 ) [ 0.9 )
(7) Pi1. P1o:y 1 —4 [p. Py:906 =25  09p., Pyy:306 =3  09¢p.
L l ) L 0.5 ) L 0.6 )



= .\'.3 - 243«

Yy
9 / L=7102 4300
o U =-936
_ P . P
60{1—0 o 12 o ““cu=-352
Y /—u.=512—24}'2
u=0 P P,
30 o) O Cu =296
i =
u=27 216
0 o 0
0 3 / 6 8 «x
w=x

Region, boundary values of the
potential, and grid in Example 2

We use this and the boundary values and take the mesh points in the usual order Py. Poy. P19, Pos. Then we
obtain the system

_4”11 + ”21 + ”12 == D - 27 - _27
0.6”11 - 215&*21 + 015”22 = —09-296 —05-216 = —3744
11 — duqo + oe = 702 + 0 = 702

0.6ts; + 0.6115 — 3igey = 09-352 + 0.9-936 = 1159.2.



In matrix form.

__4 ] ] 0 ] _H].]._ i _27 ]
0.6 —2.5 0 0.5 oy —374.4
(8) _
| 0 —4 ] lq9 702
0 0.6 0.6 =3 | [ugs - 1159.2
Gauss elimination yields the (rounded) values
11 = —55.6, o = 49.2, 19 = —298.5. oo = —436.3.

Clearly. from a grid with so few mesh points we cannot expect great accuracy. The exact solution of the PDE
. . . ; ; . 3 ) .
(not of the difference equation) having the given boundary values is « = x7 — 3xy~ and yields the values

iy = —54, oy = 54, g = —297, Hog = —432.

In practice one would use a much finer grid and solve the resulting large system by an indirect
method.



Parabolic PDEs
U= C2U,

This PDE is usually considered for x in some fixed interval, say, 0 = x = L, and time
f = 0, and one prescribes the initial temperature u(x, 0O) = f(x) (f given) and boundary
conditions at x = 0 and x = L for all 1 Z 0, for instance u(0, 1) = 0, u(L, 1) = 0. We may
assume ¢ = 1 and L = I: this can always be accomplished by a linear transformation of
x and 7 (Prob. 1). Then the heat equation and those conditions are

(1) Uy = Uy O0=x=1,r=0
(2) ux, 0) = f(x) (Initial condition)
(3) w0, 1) = u(l, 1) =0 (Boundary conditions).

A simple finite difference approximation of (1) is [see (6a) in Sec. 21.4; j is the number
of the time step]

I

- I
(4) © (Ui 1 — Uy) = 2 (Uiv15 — 2ui + Uiy ).



Figure 464 shows a corresponding grid and mesh points. The mesh size 1s /i in the
x-direction and k£ in the #-direction. Formula (4) involves the four points shown in
Fig. 465. On the left in (4) we have used a forward difference quotient since we have no
information for negative t at the start. From (4) we calculate u; ;, 1, which corresponds to
time row j + 1, in terms of the three other u that correspond to time row j. Solving (4)
for u; j,1. we have

- k
(5) ”’i,j—l—l = (1 - 2’}4)”3';}' + ’F(Ht’+1,j + ”i—l,j)* I = ,';_2 .



LR B ]

0O O 0O (j=3)
T (R G e [V
o) 0 o) (j=1)
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Grid and mesh points corresponding to (4), (5)

(7, j+ 1)

(i-1,)) ; X ; Z+1,))
(Z, j)

The four points in (4) and (5)



Computations by this explicit method based on (5) are simple. However, it can be
shown that crucial to the convergence of this method is the condition

k

6 - =
(6) r= s

1A

1 | —

That s, u;; should have a positive coetficient in (5) or (for r = 3) be absent from (5). Intuitively,
(6) means that we should not move too fast in the 7-direction. An example is given below.



Condition (6) is a handicap in practice. Indeed, to attain sufficient accuracy, we have to
choose /i small, which makes k very small by (6). For example, if # = 0.1, then k£ = 0.005.
Accordingly, we should look for a more satisfactory discretization of the heat equation.
A method that imposes no restriction on r = k/h? is the Crank—Nicolson method,

which uses values of # at the six points in Fig. 466. The idea of the method is the
replacement of the difference quotient on the right side of (4) by 3 times the sum of two
such difference quotients at two time rows (see Fig. 466). Instead of (4) we then have

1 1

P (Ui 51 = Ugj) = 2 (i1 = 2u; Uiy )
(7) |

T 2 (Uiv1jer = 2u 500 + Uimqji1)-

Multiplying by 2k and writing r = k/h? as before, we collect the terms corresponding to
time row j + | on the left and the terms corresponding to time row j on the right:

(8) (2 + Zfﬁ)h’f_,j_kl — F(Hi—kl,ijl + Hi—l,j—!—l) = (2 — 2f~)l»ff_j + F(Hf_le,j + H?'.—l,j)'



How do we use (8)? In general, the three values on the left are unknown, whereas the
three values on the right are known. If we divide the x-interval 0 = x = | in (1) mnto
n eqml intervals, we have n — 1 internal mesh points per time row (see Fig. 464, where

= 4). Then for j = Oand i = 1,- -, n — 1, formula (8) gives a lme*lr system
ot n — 1 equations for the n — 1 unknown values uyq, sy, * * -, U,,_1 1 in the first time
row in terms of the initial values wugq, 9. * * *, U,,0 and the boundary values 1y (= 0),

U, (= 0). Similarly for j = 1, j = 2, and so on; that is, for each time row we have to
solve such a linear system of n — | equations resulting from (8).

Although r = k/h* is no longer restricted, smaller » will still give better results. In
practice, one chooses a k by which one can save a considerable amount of work, without
making r too large. For instance, often a good choice is r = 1 (which would be impossible
in the previous method). Then (8) becomes simply

(9) i 1 — Uit j+1 — Wim1,j+1 = Uiv1,j T Uio1j-

Timerowj + 1
k

Time row j
h h

The six points in the Crank-
Nicolson formulas (7) and (8)



0.20 j=5

0.16 j=4

0.12 j=3
P, P_.

0.08 s ! T . . j=2
P P,

0.04 * o * * j=1
P P P, P,

t=0 o0 O G o2 j=0

x=0 0.2 0.4 0.6 0.8 1.0

i=0 i=1 i=2 i=3 i=4 i=5

Grid in Example 1

Temperature in a Metal Bar. Crank—Nicolson Method, Explicit Method

Consider a laterally insulated metal bar of length 1 and such that ¢2 = 1 in the heat equation. Suppose that the
ends of the bar are kept at temperature # = 0°C and the temperature in the bar at some instant—-call 1t 1 = 0—
is f(x) = sin x. Applying the Crank—Nicolson method with 7 = 0.2 and r = 1, find the temperature u(x, ) in
the bar for 0 = ¢ = 0.2. Compare the results with the exact solution. Also apply (5) with an r satisfying (6),
say, r = 0.25, and with values not satisfying (6), say, r = | and r = 2.5.

Solution by Crank—Nicolson. Since r = 1. formula (8) takes the form (9). Since # = 0.2 and
r = k/h? = 1, we have k = h% = 0.04. Hence we have to do 5 steps. Figure 467 shows the grid. We shall need
the initial values

10 = sin 0.277 = 0.587 785, isg = sin 0.4 = 0951 057.



Also, ugg = ugg and ugg = uqg. (Recall that wuyg means u at P in Fig. 467, etc.) In each time row in
Fig. 467 there are 4 internal mesh points. Hence in each time step we would have to solve 4 equations in 4
unknowns. But since the initial temperature distribution is symmetric with respect to x = 0.5, and « = 0 at
both ends for all 7, we have ugy = usq. ttgg = uqq in the first time row and similarly for the other rows. This
reduces each system to 2 equations in 2 unknowns. By (9), since gy = gy and ugy= 0, for j = O these
equations are

(i =1

e

4”11 - U9 = Upp + o = 0.951 057

I

(1’ = —iy1 + 4“.{21 — Uga1 = Uyp + Hap = 1.538 842,

The solution is 117 = 0.399 274, usq = 0.646 039. Similarly, for time row j = | we have the system

(i=1) 4”12 — U999 = lUpq + 91 = 0.646 039
(i =2) —Uy1o + 3tiso = 117 + Usq = 1.045 313.
The solution 1s uq1o = 0.271 221, uge = 0.438 844, and so on. This gives the temperature distribution

(Fig. 468):



!

0.00
0.04
0.08
0.12
0.16
0.20

0
0
0
0
0
0

0.588
0.399
0.271
0.184
0.125
0.085

x =04

0.951
0.646
0.439
0.298
0.202
0.138

x = 0.6

0.951
0.646
0.439
0.298
0.202
0.138

x = 0.8

0.588
0.399
0.271
0.184
0.125
0.085



wulx, t)
1 t=0
L t =0.04
0.5+ t=0.08
0 ' '
0 0.5 1 «

Temperature distribution in the bar in Example 1

Comparison with the exact solution. The present problem can be solved exactly by separating
variables (Sec. 12.5); the result is

'zrzt

(10) (x, ry = sin mx e



In this section we consider the numeric solution of problems involving hyperbolic PDEs.
We explain a standard method in terms of a typical setting for the prototype of a hyperbolic
PDE, the wave equation:

(1) Uy = Uy, 0=x=1r=0

(2) u(x, 0) = f(x) (Given initial displacement)
(3) u(x, 0) = g(x) (Given initial velocity)

(4) w0, 1) = u(l, 1) =0 (Boundary conditions).

Note that an equation u;; = c?u,,. and another x-interval can be reduced to the form (1)

by a linear transformation of x and 7. This is similar to Sec. 21.6, Prob. 1.



= oa

Replacing the derivatives by difference quotients as before, we obtain from (1) [see (6)
in Sec. 21.4 with y = 7]

|
() 2 Ui g1 — 2u + U5 1) = "2 (U1 — 245 + U1 5)

where /1 is the mesh size in x, and & 1s the mesh size in 7. This difference equation relates
5 points as shown in Fig. 469a. It suggests a rectangular grid similar to the grids for
parabolic equations in the preceding section. We choose r* = k%/h* = 1. Then u;; drops
out and we have

(6) Hi,j+1 = ”’i—l,j + ”i—!—l,j - ”i,j—l (Flg T

[t can be shown that for O < r = 1 the present explicit method is stable, so that from
(6) we may expect reasonable results for initial data that have no discontinuities. (For a



Equation (6) still involves 3 time steps j — 1.j,7 + 1, whereas the formulas in the
parabolic case involved only 2 time steps. Furthermore, we now have 2 initial conditions.

Time rowj+ 1

k
Time row j
h h J
k
Time rowj—1
(a} Formula (5) (b} Formula (6)

Mesh points used in (5) and (6)

So we ask how we get started and how we can use the initial condition (3). This can be
done as follows.



From u,(x, 0) = g(x) we derive the difference formula

1

By (U — Uy 1) = g hence U 1 = Uy — 2kg;

(7)

where g; = g(ih). For t = 0, that is, j = 0, equation (0) is

Uiy = Ui—10 T U100 — Ui—1-

Into this we substitute u; _; as given in (7). We obtain u;; = u; 19 + U 19 — U;; + 2kg;
and by simplification

(8) Uy = 5(Uj_10 + Uir10) t kg

This expresses u;; in terms of the initial data. It 1s for the beginning only. Then use (6).



Vibrating String, Wave Equation

Apply the present method with & = k£ = 0.2 to the problem (1)—(4), where

f(x) = sin x, g(x) = 0.

Solution. The grid is the same as in Fig. 467, Sec. 21.6, except for the values of f, which now are 0.2,
04, - - - (instead of 0.04, 0.08, - - -). The initial values ugg. ti19. - - - are the same as in Example 1. Sec. 21.6.
From (8) and g(x) = 0 we have

_ 1
Uip = 3519 + Ui+1.0)

From this we compute, using uyg = tgg = sin 0.27 = 0587 785, ugq = g9 = 0.951 057,

- 0.951 057 = 0.475 528

3 =

(1=1) w1 = %(frm + o) =

- 1.538 842 = 0.769 421

el [

(i =2) ugy = %(frm + ugg) =

and w3y = U9y, Ugq = 11 by symmetry as in Sec. 21.6, Example 1. From (6) with j = | we now compute,

using gy = tigg = -+ - = 0,



(i=1)  tyg = gy + Usg — t1p = 0.769 421 — 0.587 785 — 0.181 636

(i=2) gy = Uy + tzy — tigg = 0.475 528 + 0.769 421 — 0.951 057 = 0.293 892,

and tge = Ugg, g = iy by symmetry: and so on. We thus obtain the following values of the displacement
u(x, t) of the string over the first half-cycle:

t x =20 x = 0.2 x =04 x = 0.6 x = (.8 x =1
0.0 0 0.588 0.951 0.951 0.588 0
0.2 0 0.476 0.769 0.769 0.476 0
0.4 0 0.182 0.294 0.294 0.182 0
0.6 0 —0.182 —0.294 —0.294 —0.182 0
0.8 0 —0.476 —0.769 —0.769 —0.476 0
1.0 0 —(0.588 —0.951 —0.951 —0.588 0

These values are exact to 3D (3 decimals), the exact solution of the problem being (see Sec. 12.3)
u(x, 1) = sin x cos l.

The reason for the exactness follows from d’Alembert’s solution (4). Sec. 12.4. (See Prob. 4. below.)



