Chapter 11

Partial Differential Equations

11.1 Basic Concepts

A partial differential equation (PDE) is an equation involving one or more partial
derivatives ol an (unknown) function. call it . that depends on two or more variables.
often time f and one or several variables in space. The order of the highest derivative is
called the order of the PDE. As for ODEs. second-order PDEs will be the most important
ones in applications.

Just as for ordinary differential equations (ODEs) we say that a PDE is linear if it is
of the first degree in the unknown function « and its partial derivatives. Otherwise we call

it nonlinear. Thus. all the equations in Example 1 on p. 536 are linear. We call a linear

PDE homogeneous il cach ol its terms contains either u or one ol its partial derivatives.
Otherwise we call the equation nonhomogeneous. Thus, (4) in Example | (with f not
identically zero) is nonhomogeneous, whereas the other equations are homogeneous.
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Important Second-Order PDEs
2 5 a2 . . .
(1) o 3 One-dimensional wave equation
dt ax
it 9 H2H i . i
(2) o S One-dimensional heat equation
o ax’
a2 a2 . . .
(3) 2 7 =0 Two-dimensional Laplace equation
ix ay
o%u a2 . . . .
4) — 5 = fluy) Two-dimensional Poisson equation
dx dy
_ a2 9 a2u a2u . . .
(3) — ¢ — — T'wo-dimensional wave equation
at dx dy
) o2 a2 a7 u . . .
(6) 5 T 5 T 5 =0 Three-dimensional Laplace equation
dx dy dz

Here ¢ is a positive constant, { is time, x, v, 7 are Cartesian coordinates, and dimension is the number of these
coordinates in the equation.

A solution of a PDE in some region R of the space of the independent variables is a
function that has all the partial derivatives appearing in the PDE in some domain D
(definition in Sec. 9.6) containing R. and satisfies the PDE everywhere in R.

Often one merely requires that the function is continuous on the boundary of R, has
those derivatives in the interior of R, and satisfies the PDE in the interior ol R. Lelling
R lie in D simplifies the situation regarding derivatives on the boundary of R, which is
then the same on the boundary as it is in the interior of R.

In general, the totality of solutions of a PDE is very large. For example, the functions
(7) u=x%—y2% u=ev’cosy, u = sin x cosh y, u=1n(x2+ y?%
which are entirely different from each other, are solutions of (3), as you may verily. We
shall see later that the unique solution of a PDE corresponding to a given physical problem
will be obtained by the use of additional conditions arising from the problem. For
instance, this may be the condition that the solution # assume given values on the boundary
of the region R (“boundary conditions™). Or, when time 7 is one of the variables, u (or
u; = du/dt or both) may be prescribed at 1 = 0 (“‘initial conditions™).




Fundamental Theorem on Superposition

If uy and ugy are solutions of a homogeneous linear PDE in some region R, then
U = cquy + Colis

with any constants ¢y and co is also a solution of that PDE in the region R.

11.2 Modeling: Vibrating String, Wave equation

As a first important PDE let us derive the equation modeling small transverse vibrations
ol an elastic string, such as a violin string. We place the string along the x-axis, stretch it
to length L, and fasten it at the ends x = 0 and x = L. We then distort the string, and at
some instant, call it = 0, we release it and allow it to vibrate. The problem is to determine
the vibrations of the string, that is, to find its deflection u(x, ) at any point .x and at any
time r > 0; see Fig. 283.

u(x, 1) will be the solution of a PDE that is the model of our physical system to be
derived. This PDE should not be too complicated, so that we can solve it. Reasonable
simplifying assumptions (just as for ODEs modeling vibrations in Chap. 2) are as
follows.

Physical Assumptions

1. The mass of the string per unit length is constant (*homogeneous string”). The string
is perfectly elastic and does not offer any resistance to bending.

2. The tension caused by stretching the string before fastening it at the ends is so large
that the action of the gravitational force on the string (trying to pull the string down
a little) can be neglected.
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3. The string performs small transverse motions in a vertical plane; that is, every particle
of the string moves strictly vertically and so that the deflection and the slope at every
point of the string always remain small in absolute value.

Under these assumptions we may expect solutions u(x, f) that describe the physical
reality sufficiently well.

ol

X+ Ax L

Deflected string at fixed time t. Explanation on p. 539

The model of the vibrating string will consist of a PDE (“wave equation”) and additional
conditions. To obtain the PDE, we consider the forces acting on a small portion of the
string (Fig. 283). This method is typical of modeling in mechanics and elsewhere.

Since the string offers no resistance to bending, the tension is tangential to the curve
of the string at each point. Let 77 and 7y be the tension at the endpoints P and Q of that
portion. Since the points of the string move vertically, there is no motion in the horizontal
direction. Hence the horizontal components of the tension must be constant. Using the
notation shown in Fig. 283, we thus obtain

(1) Tycosa = Tycos B =T = const.

In the vertical direction we have two forces, namely, the vertical components —77 sin «
and 75 sin B of Ty and Ty; here the minus sign appears because the component at P is
directed downward. By Newton’s second law the resultant of these two forces is equal
to the mass p Ax of the portion times the acceleration 9%u/dt2, evaluated at some point
between x and x + Ax; here p is the mass of the undeflected string per unit length, and




Ax is the length of the portion of the undeflected string. (A is generally used to denote
small quantities; this has nothing to do with the Laplacian V2, which is sometimes also
denoted by A.) Hence

0%u

Tysin B — Ty sina = p Ax Py>

Using (1), we can divide this by 75 cos B = T} cos @« = T, obtlaining

Ty sin 3 Ty sin o pAx 8%u
- =tanf — tana = — -
Ty cos B Ty cos « T or

(2)

Now tan « and tan 8 are the slopes of the string at x and x + Ax:

u au
tan o = P and tan B =
X

ax

X xr+AT

Here we have to write parfial derivatives because u depends also on time 7. Dividing (2)

by Ax, we thus have
L[] (| ] e i
Ax X /| pnn ax ]|, T ot

If we let Ax approach zero, we obtain the linear PDE

3 9% 9 a%u T
©) az O “ T
This is called the one-dimensional wave equation. We see that it is homogeneous and
of the second order. The physical constant T/p is denoted by ¢? (instead of ¢) to indicate
that this constant is posifive, a fact that will be essential to the form of the solutions.
“One-dimensional” means that the equation involves only one space variable, x. In the
next section we shall complete setting up the model and then show how to solve it by a

general method that is probably the most important one for PDEs in engineering
mathematics.
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11.3 Separation of variables, Use of Fourier Series

The model of a vibrating elastic string (a violin string, for instance) consists of the
one-dimensional wave equation

5 o
o“u 5 07U . T
(1) 9 = (‘2 —y C‘2 = —

2 2 p

for the unknown deflection u(x, 1) of the string, a PDE that we have just obtained, and
some additional conditions, which we shall now derive.

Since the string is fastened at the ends x = 0 and x = L (see Sec. 12.2), we have the
two boundary conditions

(2) (a) u(0,1 =0, (b)y u(l,r)=20 for all 1.
Furthermore, the form of the motion of the string will depend on its initial deflection

(deflection at time ¢ = 0), call it f(x), and on its inifial velocity (velocity at t = 0), call
it g(x). We thus have the two initial conditions

A3) (a) u(x, 0) = f(x), (b)  ux, 0) = g(x) =x=1L)

where u, = du/dt. We now have to find a solution of the PDE (1) satisfying the conditions
(2) and (3). This will be the solution of our problem. We shall do this in three steps, as
follows.

Step 1. By the “method of separating variables” or product method, setting
u(x, 1) = F(x)G(1), we obtain from (1) two ODEs, one for F(x) and the other one for G(1).
Step 2. We determine solutions of these ODEs that satisfy the boundary conditions (2).

Step 3. Finally, using Fourier series, we compose the solutions gained in Step 2 to obtain
a solution of (1) satisfying both (2) and (3), that is, the solution of our model of the
vibrating string.
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In the method of separating variables, or product method, we determine solutions of the
wave equation (1) of the form

4) u(x, t) = F(x)G(1)

which are a product of two functions, each depending only on one of the variables x and
f. This is a powerful general method that has various applications in engineering
mathemaltics, as we shall see in this chapter. Differentiating (4), we obtain

9% - a%u "
.2 = FG and T = F'G
dt ox

where dots denote derivatives with respect to ¢ and primes derivatives with respect to .x.
By inserting this into the wave equation (1) we have

FG = 2 F'G.

Dividing by ¢2FG and simplifying gives

The variables are now separated, the left side depending only on f and the right side only
on x. Hence both sides must be constant because il they were variable, then changing
{ or x would alfect only one side, leaving the other unaltered. Thus, say,

(',: Fu
G F

Multiplying by the denominators gives immedialely (wo ordinary DEs

(5) F'— kF =0
and
©) G — %G = 0.

Here, the separation constant £ is still arbitrary.
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We now determine solutions " and G of (5) and (6) so that u = FG satisfies the boundary
conditions (2), that is,

(7) w0, 1) = FOO)G(1) = 0, u(L, 1) = F(LYG(1) = 0 for all 1.

We first solve (5). If G = 0, then u = FG = 0, which is of no interest. Hence G = 0
and then by (7).

(8) (1) F(0) =0, (b) F(L) = 0.

We show that k£ must be negative. For k£ = 0 the general solution of (5) is F' = ax + b,
and from (8) we obtain ¢« = b = 0, so that F = 0 and « = FG = 0, which is ol no interest.
For positive k = u2 a general solution of (5) is

F = Aet'™ + Be™ ™"
and from (8) we obtain F' = 0 as before (verify!). Hence we are left with the possibility
of choosing k negative, say, k = —p2 Then (5) becomes F” + p?F = 0 and has as a
general solution

F(x) = A cos px + B sin px.

From this and (8) we have
FOy=A=0 and then F(Ly = BsinpL = 0.
We must take B # 0 since otherwise F = 0. Hence sin pL = 0. Thus

n

L

(9) pL = nm, so that P = (n integer).

Setting B = 1, we thus obtain infinitely many solutions F(x) = F,(x), where

n

L.x‘ (n=1,2,---).

(10) F,(x) = sin

These solutions satisfy (8). [For negative integer n we obtain essentially the same solutions,
except for a minus sign, because sin (—a) = —sin ¢.]
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We now solve (6) with £k = 71)2 = —(nw/L)? resulting from (9), that is,
. - cn
(11%) G + 1,°G = where Ap = ¢p = I

A general solution is
G, = B, cos A, f + B,* sin A1

Hence solutions of (1) satisfying (2) are u,(x, ) = F,(x)G (1) = G, (H)F,(x), written out

nm

(11) u,(x, 1)y = (B,, cos A,,t + B,* sin A, f) sin 3 X (n=12 -

These functions are called the eigenfunctions, or characteristic functions, and the values
A, = cnm/L are called the eigenvalues, or characteristic values, of the vibrating string.
The set {Ay, Ag, - - -} is called the spectrum.

Discussion of Eigenfunctions. We see that each u,, represents a harmonic motion having
the frequency A,/27 = c¢n/2L cycles per unit time. This motion is called the nth normal
mode of the string. The first normal mode is known as the fundamental mode (n = 1),
and the others are known as overfones; musically they give the octave, octave plus fifth,
etc. Since in (11)

. nwX L 2L n—1
sin =0 at X=—,— , ",
L n n n

the nth normal mode has n — 1 nodes, that is, points of the string that do not move (in
addition to the fixed endpoints); see Fig. 284.

n=1 n=2 n=3 n=4
Normal modes of the vibrating string
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Figure 285 shows the second normal mode for various values of 7. At any instant the
string has the form of a sine wave. When the left part of the string is moving down, the
other half is moving up, and conversely. For the other modes the situation is similar.

Tuning is done by changing the tension 7. Our formula for the frequency A, /27 = cn/2L
of u, with ¢ = VT/p [see (3), Sec. 12.2] confirms that effect because it shows that the
frequency is proportional to the tension. T cannot be increased indefinitely, but can you
see what to do to get a string with a high fundamental mode? (Think of both L and p.)
Why is a violin smaller than a double-bass?

Second normal mode for various values of t

The eigenfunctions (11) satisfy the wave equation (1) and the boundary conditions (2)
(string fixed at the ends). A single u,, will generally not satisfy the initial conditions (3).
But since the wave equation (1) is linear and homogeneous, it follows from Fundamental
Theorem 1 in Sec. 12.1 that the sum of finitely many solutions u,, is a solution of (1). To
obtain a solution that also satisfies the initial conditions (3), we consider the infinite series
(with A,, = cn@/L as before)

(12) u(x, ) = 2 Uy (X, 1) = 2 (B, cos At + B,* sin A,0) sin

n=1 n=1

nir

X.

Satisfying Initial Condition (3a) (Given Initial Displacement). From (12) and (3a)
we obtain

= n
(13) u(x, 0) = >, B, sin - = fw.

n=1

11/15/2011
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Hence we must choose the B,;’s so that u(x, 0) becomes the Fourier sine series of f(x).
Thus, by (4) in Sec. 11.3,

) 2 . onmx
(14) B, = T . f(x) sin Td)c n=12"---

Satisfying Initial Condition (3b) (Given Initial Velocity). Similarly, by differentiating
(12) with respect to ¢ and using (3b), we obtain

du

ot

=z, nmx
= [2 (=B sin At £ B4y, 05 Ay) sin — }
n=1 t

t=0 =0

nmx

oo

3k
> B,*A, sin
n=1

= gx).

Hence we must choose the B,,*’s so that for f = 0 the derivative du/dt becomes the Fourier
sine series of g(x). Thus, again by (4) in Sec. 11.3,

2k . nmX
B, A, = — f g(x) sin dx.
L Jy
Since A, = enw/L, we obtain by division
_ L nX
(15) B,* = f 2(x) sin dx, n=12---
CRT o

Result. Our discussion shows that u(x, 1) given by (12) with coefficients (14) and (15)
is a solution of (1) that satisfies all the conditions in (2) and (3), provided the series (12)
converges and so do the series obtained by differentiating (12) twice termwise with respect
to x and 7 and have the sums 8%u/ax? and #%u/dt%, respectively, which are continuous.

Solution (12) established. According to our discussion, the solution (12) is at first a purely
formal expression, but we shall now establish it. For the sake of simplicity we consider
only the case when the initial velocity g(x) is identically zero. Then the B,,* are zero, and
(12) reduces to

nwx cn

(16) u(x, 1) = z B,, cos At sin 7 A, =

n=1

11/15/2011

11



0 L x

Fig. 261. Odd periodic extension of f(x)

It is possible to sum this series, that is, to write the result in a closed or finite form. For
this purpose we use the formula [see (11), Appendix A3.1]

cnt . AT 1 .| nm .| nm
cos 3 tsin—x = —|sini— (x — ¢f); + sin T(x-i—cr) .

L 2 L
Consequently, we may write (16) in the form

1 nmw
= 1 e + .
5 E, Bﬂ sin [ (x Ct)}

n=1

1 oo
u(x, ) = 5 3, B, sin {% fig ct)} +
n=1

These two series are those obtained by substituting x — ¢f and x + ct, respectively, for|
the variable x in the Fourier sine series (13) for f(x). Thus

a7 ux, 1) = 3[f*(x — cf) + f*x + b)) \

where f* is the odd periodic extension of f with the period 2L (Fig. 261).

Physical Interpretation of the Solution (17). The graph of f*(x — ¢t) is obtained from|
the graph of f*(x) by shifting the latter ¢t units to the right (Fig. 262). This means that
f*(x — ct) (¢ > 0) represents a wave that is traveling to the right as ¢ increases. Similarly,
f*(x + ct) represents a wave that is traveling to the left, and u(x, ) is the superposition
of these two waves.

[ [Hx - ct)

A |

p——ct

Fig. 262. Interpretation of (17)

11/15/2011
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Vibrating string if the initial deflection’is triangular

Find the solution of the wave equation (1) corresponding to the triangular initial deflection

2k . L
=32 i Q=g —
L = B
f&x) =

kL 'fL<<L
-L( x)!zx

and initial velocity zero. (Figure 263 shows f(x) = u(x, 0) at the top.)

Solution. Since g(x) =0, we havé: B, * = 01in (12), and from Example 3 in Sec. 10.4 we sec that the B,, are
given by (7), Sec. 10.4. Thus (12) takes the form

8k I e 1 37 3me
. i Pl ol il ol i 1
u(x, £) = sin 7~ x cos T t 2 sin ——x cos — £k

For plotting the graph of the solution we may use u(x, C) = f(x) and the above interpretation of the two functions
in the representation (17). This leads to the graph shown in Fig. 263. p S|

Fig. 263. Ul .
Solution u(x, t) in z B, T RS - . i
Example 1 for various e ’ T aa
values of t (right part — A

of the figure) obtained as ~ 2/"**5) —~_ ... fee

the superposition of a L Yo =2l
wave traveling to the right - =

(dashed) and a wave P e =D

traveling to the left (left (S — R .S
part of the figure) =7 T~ :

1 4L . 4L
Mz +==) L= w2 M=)
B 5 LL“'-\—"’-_‘ - s kﬁ" ¢ =4L/5¢
e s gl
1., n 1 t=Lk
y o~ SfHx-1) ., -
S 3lM= N A
=3+ L) N
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11.5 Heat Equation: Solution by Fourier Series

From the wave equation we now turn to the next “big” PDE, the heat equation

dut - 9 K
— = 2V, ¢ =—,
or o

which gives the temperature u(x, v, z, 1) in a body of homogeneous material. Here ¢ is
the thermal diffusivity. K the thermal conductivity, o the specific heat, and p the density
of the material of the body. V2u is the Laplacian of w, and with respect to Cartesian
coordinates x, y, Z.
Vi = d—)” + ﬁ -+ o
r'}.\'2 r'}_\‘?' r]:z ’

The heat equation was derived in Sec. 98 _ [t is also called the diffusion equation.

As an important application, let us first consider the temperature in a long thin metal
bar or wire of constant cross section and homogenecous material, which is oriented along
the v-axis (Fig. 291) and is perfectly insulated laterally. so that heat [lows in the x-direction

0 x=L
Bar under consideration

only. Then u depends only on x and time #, and the heat equation becomes the
one-dimensional heat equation

" au % a2u

- = C7 —5 .

ot ax?
This seems to differ only very little from the wave equation, which has a term u,, instead
of u;, but we shall see that this will make the solutions of (1) behave quite differently
from those of the wave equation.

We shall solve (1) for some important types of boundary and initial conditions. We
begin with the case in which the ends x = 0 and x = L of the bar are kept at temperature
zero, so that we have the boundary conditions

(2) w0, n =0, ull, 1) =20 for all 1.

11/15/2011
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Furthermore, the initial temperature in the bar at time r = 0 is given, say, f(x), so that we

have the initial condition

3) u(x, 0) = f(x) [f(x) given].

Here we must have f(0) = 0 and f(L) = 0 because of (2).

We shall determine a solution u(x, ) of (1) satisfying (2) and (3)—one initial condition
will be enough, as opposed (o two initial conditions for the wave equation. Technically,
our method will parallel that for the wave equation in Sec. 12.3: a separation of variables,
followed by the use of Fourier series. You may find a step-by-step comparison worthwhile.

Step 1. Two ODEs from the heat equation (1). Substitution of a product
ux, 1) = F0)G(t) into (1) gives FG = ¢2F"G with G = dGldt and F" = d?Fldx®. To
separate the variables. we divide by ¢*FG. obtaining

-l (_} f‘""
(4) v
! G F

The left side depends only on 7 and the right side only on x. so that both sides must equal
a constant £ (as in Sec. 12.3). You may show that for k = 0 or £ = 0 the only solution

w = FG satislying (2) is u = 0. For negative k = —pz we have from (4)
[ ) F

Multiplication by the denominators gives immediately the two ODEs

(3) F'+p2F=0
and
(6) G + ¢%p% = 0.

11/15/2011
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Step 2. Satisfying the boundary conditions (2). We [irst solve (5). A general solution is
(7) f(x) = A cos px + B sin px.
From the boundary conditions (2) it follows that

w(0. 1) = F(0)G(r) = 0 and u(lL, 1y = F(L)G(r) = 0.

Since G = 0 would give 1 = 0, we require F(0) = 0, F(L) = 0 and get F(0) = A =0
by (7) and then F(L) = B sin pL = 0, with B # 0 (to avoid F = 0); thus,

nir

L

sin pL = 0, hence p= n=12,---.

Setting B = 1, we thus obtain the following solutions of (5) satisfying (2):

nmwx

F,(x) = sin 3

n=12---.

(As in Sec. 113  we need not consider negative integral values of n.)

All this was literally the same as in Sec. 11.3 . From now on it differs since (6) differs
from (6) in Sec. 113 . We now solve (6). For p = nw/L, as just obtained, (6) becomes

. . cnr
G+A2G=0 where A, = L“
It has the general solution
G (1) = Bpe ™, n=1,2---
where B, is a constant. Hence the functions
. NTX e,
(8) u,(x, )y = F,(x)G,(H = B, sin e ' n=1,2,--

are solutions of the heat equation (1), satisfying (2). These are the eigenfunctions of the
problem, corresponding to the eigenvalues A,, = cna/L.

11/15/2011
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Step 3. Solution of the entire problem. Fourier series. So far we have solutions (8)
satisfying the boundary conditions (2). To obtain a solution that also satisfies the initial
condition (3), we consider a series of these eigenfunctions,

o

= LT nir
&) uix, ) = 2, u,(x. ) = >, B, sin ! 7 Mt (/\n _u ) .

n=1 n=1

From this and (3) we have

nmwx

u(x, 0) = 2 B, sin

n=1

= f(x).

Hence for (9) to satisfy (3), the B,,’s must be the coefficients of the Fourier sine series,
as given by (4) in Sec. 11.3; thus

10 B—sz-'”md = 1.2
(10) n= T Of(k)sm L =12 -

EXAMPLE 3

“Triangular” initial temperature in a bar

Find the temperature in a laterally insulated bar of length L whose ends are kept at temperature 0, assuming thal
the initial temperature is

- if 0<zx< LA,

fx) =
L-x if LR<x<L

(The uppermost part of Fig. 267 on the next page shows this function for the special L = 7.)

Solution. From (11) we get

1% Bt (jm B e T il B2 dx)
= e X8I ——ax r — XS i
Lo L 0 L /2 L
Integration gives B,, = 0 if n is even,
AL 4L
Bo=—% B=1%%") and Bim———5 (=371, 49
nmw "o

(see also Example 3 in Sec. 10.4 with k = L/2). Hence the solution is

aL [ mx cm)2 1 3mx 3ear\2
u(x,[):? sm—L—exp 7? t fasmTexp — 2 gl e |

11/15/2011
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u
Nit=0
. N
Fig. 267. g N
Solution of Example 3 N
for L = 7, c = 1, and various values of t \\I
=

3 x
— £=05
P /)}f —‘k‘\
w s et
i .
/ |
F( 4 x
u t=2
— i
T x

Bar with Insulated Ends. Eigenvalue O
Find a solution formula of (1), (3) with (2) replaced by the condition that both ends of the bar are insulated.

Solution. Physical experiments show that the rate of heat flow is proportional to the gradient of the
temperature. Hence if the ends x = O and x = L of the bar are insulated, so that no heat can flow through the
ends, we have grad « = u,, = du/ox and the boundary conditions

(2% 1,(0, 1) = 0, (L. 1) =0 for all r.

Since u(x, 1) = F)G(N. this gives u (0. 1) = F'(0)G(r) = 0 and uy(L. 1) = F'(L)G(r) = 0. Differentiating (7),
we have F'(x) = —Ap sin px + Bp cos px, so that

F'(0)=Bp=0 and then F'(L) = —Ap sin pL = 0.
The second of these conditions gives p = p, = nw/L, (n = 0,1, 2, - - -). From this and (7) with A = 1
and B = 0 we get Fj(x) = cos (nmx/L)y . (n =0, 1,2, +). With G,, as before, this yields the eigenfunctions
. nwx o2,
(1) lip(X, 1) = F(0)G,(1) = Ay cos e (n=20,1,-")
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corresponding to the eigenvalues A, = enar/L. The latter are as before, but we now have the additional eigenvalue
Ao = 0 and eigenfunction ug = const, which is the solution of the problem if the initial temperature f(x) is
constant. This shows the remarkable fact that a separation constant can very well be zero, and zero can be an
cigenvalie.

Furthermore, whereas (8) gave a Fourier sine series, we now get from (11) a Fourier cosine series

oo

-z narx 2 cnr
(12) u(x, 1) = 2 tp(x, 1)y = E Ay, cos I g A"t Ay = .
n=0 n=0

Its coefficients result from the initial condition (3),

= nX
ux, 0) = > Ay, cos /= = flx),
L

n=0

in the form (2), Sec. 11.3, that is,
L L
. | 2 nx

(13) Ag = A . flx) dx, Ay = i3 . flx) cos L dx, n=1,2,
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