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2.1 Homogeneous Linear equations of 2"d Order

If r(x) = O (that is, r(x) = 0 for all x considered; read “r(x) is identically zero™), then
(1) reduces to

(2) Y + ploy” + gy =0

and is called homogeneous. If r(x) # 0, then (1) is called nonhomogeneous. This is
similar to Sec. 1.5.
For instance, a nonhomogeneous linecar ODE is

and a homogeneous linear ODE is

"

W'y +ay =0, in standard form v +—y +y=0.
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An example of a nonlinear ODE is
_\'”_\' + _1."2 = (.

The lunctions p and ¢ in (1) and (2) are called the coeflicients of the ODEs,
Solutions arc defined similarly as for first-order ODEs in Chap. 1. A function

v = h(x)

is called a solution of a (lincar or nonlinear) second-order ODE on some open interval [
if /i is defined and twice differentiable throughout that interval and is such that the ODE
becomes an identity if we replace the unknown v by h, the derivative ¥' by &’. and the
second derivative ¥ by 4", Examples are given below.

Fundamental Theorem for the Homogeneous Linear ODE (2)

For a homogeneous linear ODE (2), any linear combination of twe solutions on an
open interval I is again a solution of (2) on I In particular, for such an equation,
sums and constant multiples of solutions are again solutions.

For a second-order homogeneous linear ODE (2) an initial value problem consists of
(2) and two initial conditions

(4) Y(xo) = K, ¥ (xo) = Ki.

These conditions prescribe given values Ky and Ky of the solution and its first derivative
(the slope of its curve) at the same given x = xg in the open interval considered.

The conditions (4) are used to determine the two arbitrary constants ¢, and ¢y in a
general solution

(%) Y =11 T Coye

of the ODE; here, y; and yp are suitable solutions of the ODE,
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General Solution, Basis, Particular Solution

A general solution of an ODE (2) on an open interval / is a solution (5) in which
vy and yg are solutions of (2) on { that are not proportional, and ¢, and ¢g are arbitrary
constants. These yy, vs are called a basis (or a fundamental system) of solutions
of (2)on L

A particular solution of (2) on [ is obtained if we assign specific values to ¢
and ¢y in (5).

importance. Namely, two functions y; and yy are called linearly independent on an
interval I where they are defined il

(7)  kyi(x) + kayo(x) = 0 everywhere on [ implies ki = 0and ky = 0.

And y; and v, are called linearly dependent on 7 if (7) also holds for some constants
ky, ko not both zero. Then if ky # 0 or ks # 0, we can divide and see that y; and y, are
proportional,

In contrast, in the case of linear independence these functions are not proportional because
then we cannot divide in (7). This gives the following

Basis (Reformulated)
A basis of solutions of (2) on an open interval [ is a pair of linearly independent
solutions of (2) on 1.
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Reduction of Order if a Solution Is Known. Basis

Find a basis of solutions of the ODE

Solution. Inspection shows that y; = x is a solution because y{ = 1 and v] = 0. so that the first term

vanishes identically and the second and third terms cancel. The idea of the method is to substitute

’ r " ” I
V = Uyp = UX, y =ux+ou, v =ux+ 2u
into the ODE. This gives

(2 — )"y + 2u’) = x(u'x + u) + ux = 0.

wx and —xu cancel and we are left with the following ODE, which we divide by x, order, and simplify,

2 — oy + 24"y — 2’ =0, (2 — o’ + (x — 2w’ = 0.
Continued
7
This ODE is of firstorderin v =1 " wam:ly, 0 o’ (v =0 e aration of variables and integration

sives

=2 I 2 x =1
o = 2—1 dv = Py - . In|o| = In|x I~ 2Inlx =1In \—2

We need no constant of integration because we want to obtain a particular solution: similarly in the next
integration. Taking exponents and integrating again, we obtain

x—1 1 I ) I
pE——g—iE = —ie = lvde=1Inly+ —. hence vg =ux=xInl| + I.
Az X X v
Since vy = vand v = x In 3] + | arc lincarly independent (their quotient is not constant), we have obtained

a basis of solutions, valid for all positive x.
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2.2 2" Order Homogeneous equations with constant
coefficients

We shall now consider second-order homogenecous linear ODEs whose coefTicients a and
b are constant,

(1) v+ ay' + by = 0.

These equations have important applications, especially in connection with mechanical
and electrical vibrations. as we shall see in Secs. 2.4, 2.8, and 2.9.

How 1o solve (1)? We remember [rom Sec. 1.5 that the solution of the first-order linear
ODE with a constant coefficient &

v o+ ky =0
is an exponential function y = ce™**. This gives us the idea o try as a solution of (1) the
function
Continued
9

2) y =M,
Substituting (2) and its derivatives
"

r . 9 .
vo= AeM and yoo= AfeM

into our equation (1). we obtain

(A% + ah + bye™ = 0.
Hence if A is a solution of the important characteristic equation (or auxiliary equation)

(3) M+al+b=0

then the exponential [unction (2) is a solution of the ODE (1). Now [rom elementary
algebra we recall that the roots of this quadratic equation (3) are

Continued

10
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) M o=d(—a + Va® — 4b), Ay = 2(—a — Va® — 4b).
(3) and (4) will be basic because our derivation shows that the functions

(5) y = eM? and yg = e’

are solutions of (1). Verify this by substituting (5) into (1).
From algebra we further know that the quadratic equation (3) may have three kinds of
roots, depending on the sign of the discriminant a® — 4b, namely,

(Case I) Two real roots if a® — 4b > 0,

(Case II) A real double root if a2 —4b = 0,
(Case TIT)  Complex conjugate roots if a® — 4b < 0.

11

In this case. a basis ol solutions o1 (2§ ou any ntervel i
Agr

v = et and Vo = ¢

because vy and yy are defined (and real) for all x and their quotient is not constanl. The
corresponding general solution is

(6) .\. = {Il()Al.r + f'gi"Az'I-.

12

9/25/2011



If the discriminant a® — 4b is zero, we cze directly from (4) that we get only one root,

A = Ay = Ay = —a/2, hence only one solution,
vy = ‘;(alzix.
in the case of a double root of (3) a basis of solutions of (1) on any interval is

—ax/2 —ax/2

€ Xe

The corresponding general solution is

(7) y = (¢ + cax)e™ 2,

13

This case occurs if the discriminant a® — 4b of the characteristic equation (3) is negative.
In this case, the roots of (3) and thus the solutions of the ODE (1) come at first out
complex. However, we show that from them we can obtain a basis of real solutions

(8) v = e %2 cos wx, vy = ¢~ %2 sin wx (w>>0)
where w® = b — a® It can be verified by substitution that these are solutions in the
present case. We shall derive them systematically after the two examples by using the

complex exponential function. They form a basis on any interval since their quotient
cot wx is not constant. Hence a real general solution in Case 111 is

)] y = e %2 (A cos wx + B sin wx) (A, B arbitrary).

14
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Casc Roots of (2) Basis of (1) General Solution of (1)

| Diﬂ:\l:c’l,l ;‘cnl T AaE y = 6@ + cpehe®

Real double root ; .
Il 1 "2 a2 v = (¢ + cox)e @%/2

A= _fd 4
Complex conjugate — s
_ 1 : SN COS Y _  —ax/? ) . F: E
I11 Ay = —5a + iw, —axl2 y=e¢ (A cos wx + Bsin wx)
1 ; e~ "M sin wy
—‘Il:_J‘ i, Sumat? 1))
15
2.5 Modeling: Free Oscillations
Unstretched <
spring 0
- —(y=0) -
System in Y
static ———-
equilibrium System in
motion
(a) (b) (c)
I:I Mechanical mass—spring system
16
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How can we oblain the motion of the body, say. the displacement y(r) as unction ol
time 77 Now this motion is determined by Newton’s second law

(1) Mass % Acceleration = my” = Force

where ¥" = d®v/dr* and “Force” is the resultant of all the forces acting on the body.

(For systems of units and conversion factors, see the inside of the front cover.)

We choose the downward direction as the positive direction, thus regarding downward
forces as positive and upward forces as negative.

{1 Thespring is first unstretched. We now attach the body. This stretches
the spring by an amount sy shown in the figure. It causes an upward force Iy in the spring.
Experiments show that [y is proportional to the stretch ;. say,

17

2) Fo = —ksg (Hooke’s law?).

k (> 0) is called the spring constant (or spring modulus). The minus sign indicates that
Fy points upward, in our negative direction. Stiff springs have large k. (Explain!)

The extension sq is such that £y in the spring balances the weight W = mg of the
body (where g = 980 cm/sec® = 32.17 ft/sec? is the gravitational constant). Hence
Fo + W= —ksy + mg = 0. These forces will not affect the motion. Spring and body are
again at rest. This is called the static equilibrium of the system[___ ] We measure
the displacement y(f) of the body from this ‘equilibrium point’ as the origin y = 0,
downward positive and upward negative.

From the position y = 0 we pull the body downward. This further stretches the spring
by some amount y > 0 (the distance we pull it down). By Hooke’s law this causes an
(additional) upward force F in the spring,

F is a restoring force. It has the tendency to restore the system, that is, to pull the body
back tov = 0.

18
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Every system has damping—otherwise it would keep moving forever. But practically. the
effect of damping may often be negligible, for example, for the motion of an iron ball on
a spring during a few minutes. Then £ is the only lorce in (1) causing the motion. Hence
(1) gives the model my” = —ky or

(3) my" + ky = 0.
We obtain as a general solution ) ' e
4) () = A cos wyl + B sin wyt, wy = \,'/ m

The corresponding motion is called a harmonic oscillation.

Since the trigonometric functions in (4) have the period 27/w,. the body executes wy/27
cycles per second. This is the frequency of the oscillation, which is also called the natural
frequency of the system. It is measured in cycles per second. Another name for cycles/sec
is hertz (Hz).?

The sum in (4) can be combined into a phase-shifted cosine with amplitude C = V A% + B2
and phase angle § = arctan (B/A),

(4%) y(1) = C cos (wgl — §).
19

We now add a damping force

’

Fy= —cy
to our model my” = —ky, so that we have my” = —ky — ¢y’ or
(5) my" + ¢y + ky = 0.

Physically this can be done by connecting the body to a dashpot; see Fig. 35. We assume
this new force to be proportional to the velocity v' = dy/di, as shown. This is generally
a good approximation, at least for small velocities.

c is called the damping constant. We show that ¢ is positive. If at some instant, v" is
positive, the body is moving downward (which is the positive direction). Hence the
damping force 'y = 7(‘)". always acting against the direction of motion, must be an
upward force, which means that it must be negative, F, = —cy’ < 0, so that —¢ < 0 and
¢ > 0. For an upward motion, ' < 0 and we have a downward F, = —cy > 0; hence
—c¢ < 0and ¢ > 0, as before.

Continued

20
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The ODE (5) is homogeneous linear and has constant coefficients. Hence we can solve
it by the method in Sec. 2.2. The characteristic equation is (divide (5) by m)

9 c k
A+ — A+ — =0
m m
k Spring

m Body
¢ Dashpot

[ ] Damped system

Continued

21

By the usual formula for the roots of a quadratic equation we obtain, as in Sec. 2.2,

: 1 aru—
6) A\ =—a+pB A=—a—pfB where a= < and B=— V& — dmk.
2m 2m

[t is now most interesting that depending on the amount of damping (much, medium, or little)
there will be three types of motion corresponding to the three Cases I, II, IT in Sec. 2.2:

Case 1. ¢ > 4dmk. Distinct real roots A1, As. (Overdamping)
Case II.  ¢2 = 4mk. A real double root. (Critical damping)
Case ITI.  c2 < 4mk. Complex conjugate roots. (Underdamping)

22
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Case |. Overdamping

If the damping constant ¢ is so large that ¢ > 4mk, then Ay and A, are distinct real roots.
In this case the corresponding general solution of (5) is

‘7] -\,(” = r,lf)ﬁf!hﬁ;r St r‘2{)firr+ﬁ:r.

We see that in this case, damping takes out energy so quickly that the body does not
oscillate. For 1 = 0 both exponents in (7) are negative because o = (), § = (), and
B* = o® — kim < o Hence both terms in (7) approach zero as t — . Practically
speaking, after a sufficiently long time the mass will be at rest at the static equilibrium
position (v = 0). Figure 36 shows (7) for some typical initial conditions.

23

Case |l. Critical Damping

Critical damping is the border case between nonoscillatory motions (Case 1) and oscillations
(Case M. It occurs if the characteristic equation has a double root. that is, if 2 = dmk,

La) iy

(D) Positive
(2 Zero Initial velocity
(3) Negative

\:I Typical motions (7) in the overdamped case
(a) Positive initial displacement

(b) Megative initial displacement

Continued
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so that 8 = 0, Ay = Ay = —a. Then the corresponding general solution of (5) is
(8) W) = (c; + cahe™™.

—=axl

This solution can pass through the equilibrium position y = 0 at most once because ¢
is never zero and ¢y + caf can have at most one positive zero. If both ¢y and ¢4 are positive
(or both negative). it has no positive zero, so that y does not pass through 0 at all. Figure
43 shows typical forms of (8). Note that they look almost like those in the previous fligure.

25

Case lll. Underdamping
This is the most interesting case. It occurs if the damping constant ¢ is so small that
¢® < 4mk. Then B in (6) is no longer real but pure imaginary, say,

1 — [ k 2
9 = jw* where = — Vamk — 2= [— - — (=0
@ B=ie @ 2m ! ‘ N om dm?® =0
M= —a+ i, As = —a — iw*
with & = ¢/(2m), as given in (6). Hence the corresponding general solution is
(10) V(1) = e A cos w*l + B sin w*1) = Ce™"" cos (w*1 — 8)
where €2 = A% + B% and tan 8 = B/A. as in (4%).
Continued
26
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This represents damped oscillations. Their curve lies between the dashed curves
v=Ce " and y = —Ce™™" in Fig. 38, touching them when «*1 — §is an integer multiple
ol 7 because these are the points at which cos (@*r — &) equals 1 or —1.

The frequency is w*/(27) Hz (hertz, cycles/sec). From (9) we see that the smaller ¢ (= 0)
is. the larger is @* and the more rapid the oscillations become. If ¢ approaches 0, then @
approaches wy = VA/m, giving the harmonic oscillation (4). whose frequency wy/(27) is
the natural frequency of the system.

c
§
\.\\\‘ s
- _‘l
}@) ““““
IR
0 z -
t I,v”
’,fa’—('-\' i
(D Positive e
@ Zero Initial velocity
(@ Negative Damped oscillation in
Critical damping [see (8]] Case |ll [see (10)]
27

2.8 Nonhomogeneous Equations

In this section we proceed from homogeneous to nonhomogeneous linear ODEs
(1) v+ ploy” + gy = r(x)

where r(x) # 0. We shall see that a “general solution™ of (1) is the sum ol a general
solution of the corresponding homogeneous ODE

(2) ."” + p(_l.')l\"F + q(x)y =0

and a “particular solution™ of (1). These two new terms “general solution of (1)" and
“particular solution of (1)” are defined as follows.

Continued

28

9/25/2011

14



General Solution, Particular Solution

A general solution of the nonhomogeneous ODE (1) on an open interval [ is a
solution of the form

3) 3O = ) + Yok

here, y;, = ¢1y; + ¢9¥9 is a general solution of the homogeneous ODE (2) on [ and
¥p is any solution of (1) on 7 containing no arbitrary constants.

A particular solution of (1) on / is a solution obtained from (3) by assigning
specific values to the arbitrary constants ¢; and ¢y in yy,.

29

Relations of Solutions of (1) to Those of (2)
(a) The sum of a solution v of (1) on some open interval I and a solution v of
(2) on I is a solution of (1) on 1. In particular, (3) is a solution of (1) on 1.
(b) The difference of two solutions of (1) on I is a solution of (2) on L

A General Solution of a Nonhomogeneous ODE Includes All Solutions

If the coefficients p(x), q(x), and the function r(x) in (1) are continuous on some
open interval 1, then every solution of (1) on [ is obtained by assigning suitable
values to the arbitrary constants ¢y and cq in a general solution (3) of (1) on 1.

30
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2.9 Solution by Undetermined Coefficients

More precisely, the method of undetermined coefficients is suitable for linear ODEs
with constant coefficients a and b

M+ ay' + by = r(x)

@) Y
when r(x) is an exponential [unction. a power ol x. a cosine or sine, or sums or products
of such functions. These functions have derivatives similar to r(x) itself. This gives the
idea. We choose a form for y, similar to r(x), but with unknown coefficients to be
determined by substituting that v, and its derivatives into the ODE. Table 2.1 on p. 80
shows the choice of y,, for practically important forms of r(x). Corresponding rules are
as follows.

Continued

31

Choice Rules for the Method of Undetermined Coefficients

(a) Basic Rule. [If r(x) in (4) is one of the functions in the first column in
Table 2.1, choose Vp in the same line and determine its undeternmined
coefficients by substituting y, and its derivatives into (4).

(b) Modification Rule. If a term in your choice for y, happens to be a
solution of the homogeneous ODE corresponding to (4), multiply your
choice of y,, by x (or by x2 if this solution corresponds to a double root of
the characteristic equation of the homogeneous ODE).

(c) Sum Rule. If r(x) is a sum of functions in the first column of Table 2.1,
choose for y, the sum of the functions in the corresponding lines of the
second column.

The Basic Rule applies when r(x) is a single term. The Modification Rule helps in the
indicated case, and to recognize such a case, we have to solve the homogeneous ODE
first. The Sum Rule follows by noting that the sum of two solutions of (1) with r = ry

and r = ry (and the same left side!) is a solution of (1) with r = r; + ro. (Verify!)

32
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Method of Undetermined Coefficients

Term in r(x) Choice for _\'p(,\')
ke¥™ Ce?™
kx™(n=0,1,-"") Kax"+ K, X" 14+ 4+ Kix + K,
k cos wx

. }K cos wx + M sin wx
k sin wx
ke™™ cos wx

. }e‘”(K cos wx + M sin wx)
ke“" sin wx

33

2.10 Solution by Variation of Parameters

We continue our discussion of nonhomogeneous linear ODEs
(1) v+ plxy’ + gx)y = rix).

Lagrange’s method gives a particular solution y,, of (1) on 7 in the form

. Vol wnr
2 yplX) = —y J’f dx +y J’f dx
( ) ) p( ) Y1 w J2 W
where yq, vo form a basis of solutions of the corresponding homogeneous ODE
(3) V' poy” + gy =0

on /, and W is the Wronskian of vy, vs,

4) W= yiys — yay1

34
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Method of Variation of Parameters

Solve the nonhomogeneous ODE
1

COS X

Solution. A basis of solutions of the homogeneous ODE on any interval is y; = cos X. v = sin x. This
gives the Wronskian

W(yq.v9) = cosx cosx — sinx (—sinx) = 1.
From (2), choosing zero constants of integration, we get the particular solution of the given ODE
Yp = —cos .\f\‘in x secx dx + sinx fcm X sec x dx |:|
= cos x In|cos x| + x sin x ‘

Figure 69 shows vy, and its first term, which is small, so that x sin x essentially determines the shape of the curve
of vp. (Recall from Sec. 2.8 that we have seen x sin x in connection with resonance, except for notation.) From
vp and the general solution yp = ¢1yy + cayp of the homogeneous ODE we obtain the answer

V=V typ =t In |cos .\'\) cosx + (cg + X) sinx.
Continued
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