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1.1 Basic Concepts and ldeas

In this chapter we shall consider first-order ODEs. Such cquations contain only the
~ . . ’ . . ~ . ~ .
first derivative ¥v° and may contain v and any given functions of x. Hence we can write
them as

(4) Fix,v.v') =0
or olten in the form

y = fx, y).

This is called the explicit form, in contrast with the implicit form (4). For instance, the
implicit ODE x 3y — 4v2 = 0 (where x # 0) can be written explicitly as v = 4x®v2,
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A function
y = h(x)

is called a solution of a given ODE (4) on some open interval ¢ << x << b if fi(x) is defined
and differentiable throughout the interval and is such that the equation becomes an identity
if y and y" are replaced with i and /', respectively. The curve (the graph) of /i is called
a solution curve.

Here, open interval ¢ << x << b means that the endpoints a and » are not regarded as
points belonging to the interval. Also, a < x <C b includes infinite intervals —= << x < b,
a << x << w, —w < x < = (the real line) as special cases.

Example 3

Solution Curves

Ihe ODE v' = dvidy = cos x can be solved directly by integration on both sides. Indeed. using calculus, we
oblain v = [ cos x dv = sinx + ¢, where ¢ is an arbitrary constant. This is a family of solutions. Each value
of ¢, for instance, 2.75 or 0 or —8, gives one of these curves. Figure 2 shows some of them, for e = —3, -2,

—1,0,1,2, 3,4

_4 L

Solutions y = sin x + ¢ of the ODE y' = cosx
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In most cases the unique solution of a given problem, hence a particular solution, is
obtained from a general solution by an initial condition y(xy) = vy, with given values
Xo and vg, that is used o determine a value of the arbitrary constant ¢. Geometrically
this condition means that the solution curve should pass through the point (xg, vg) in
the xy-plane. An ODE together with an initial condition is called an initial value
problem. Thus, if the ODE is explicit, y' = f(x, v), the initial value problem is of the
form

(10) y' = flx ), ¥(Xp) = Yo.

1.3 Separable Differential Equations
Many practically useful ODEs can be reduced to the form
(1) gy’ = f(x)

by purely algebraic manipulations. Then we can integrate on both sides with respect to .x.
obtaining

(2) Jg(_\'} v dy = J_f‘(.r) dx + c.

On the left we can switch to y as the variable of integration. By calculus, y" dx = dv, so
that

(3) fg()-‘) dy = ff(x) dx + c.
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Certain nonseparable ODEs can be made separable by transformations that introduce for
v a new unknown function. We discuss this technique for a class of ODEs of practical

importance, namely, for equations

' - “
(8) Y= (—) .
X

Here, f is any (differentiable) function of y/x, such as sin (y/x), (v/x)%, and so on. (Such
an ODE is sometimes called a homogeneous ODE, a term we shall not use but reserve
for a more important purpose in Sec. 1.5.)

The form of such an ODE suggests that we set y/x = u; thus,

) V= and by product differentiation vi=u'x +

Substitution into v = f(wx) then gives u'x + u = f(u) or u’x = f(u) — u. We see that
this can be separated:
du dx

(1) — =
fuy — u X

1.4 Modeling: Separable Equations
Example 2

Mixing Problem

Mixing problems occur quite frequently in chemical industry. We explain here how to solve the basic model
involving a single tank. The tank in Fig. 9 contains 1000 gal of water in which initially 100 Ib of salt is dissolved.
Brine runs in at a rate of 10 gal/min, and each gallon contains 5 Ib of dissoved salt. The mixture in the tank is
kept uniform by stirring. Brine runs out at 10 gal/min. Find the amount of salt in the tank at any time r.

Solution. Step 1. Setting up a model. Let 1(r) denote the amount of salt in the tank at time 7. Its time rate
of change is
v = Salt inflow rate — Salt outflow rate “Balance law”.

51b times 10 gal gives an inflow of 50 Ib of salt. Now, the outflow is 10 gal of brine. This is 10/1000 = 0.01
(= 1%) of the total brine content in the tank, hence 0.01 of the salt content v(f), that is, 0.01v(f). Thus the model
is the ODE

’

4) v =50 — 0.0ly = —0.01(v — 5000).
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Step 2. Solution of the model. The ODE (4) is separable. Separation, integration, and wking exponents on both

sides gives

dv
- = =001t
——— = =001 1. In |v S000f = —0.01r + ¢*, v SO0 = ¢¢ .
v — 5000 | .

Initially the tank contains 100 1b of salt. Hence y(0) = 100 is the initial condition that will give the unique
solution. Substituting v = 100 and 1 = 0 in the last equation gives 100 = 5000 = ce® = ¢, Hence ¢ = —4900.
Hence the amount of salt in the tank at time 1 is

(5) vy = 5000 — 4900~ 0L,

This function shows an exponential approach to the limit 3000 Tb; see Fig. 9. Can you explain physically that
vir) should inerease with time? That its limit is 3000 167 Can you see the limit direetly from the ODE?

The maodel discussed becomes more realistic in problems on pollutants in lakes (see Problem Set 1.5, Prob.
27y or drugs in organs. These wypes of problems are more difficult becavnse the mixing may be imperfeet and

the flow rates (in and out) may be different and known only very roughly.
y
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Mixing problem in Example 3

1.5 Exact Differential Equations
Integrating Factors
A first-order ODE M(x, y) + N(x, )f))*’ = 0, written as (use dy = _\*' dx as in Sec. 1.3)

(D M(x, y) dx + N(x, v) dy = 0

is called an exact differential equation if the differential form M(x, v) dx + N(x, v) dv
is exact, that is, this form is the differential

du du
2) du = — dx + — dy
ax ay

of some function u(x, y). Then (1) can be written

du = 0.

By integration we immediately obtain the general solution of (1) in the form

(3) u(x, v) = c.
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oM AN
(5) -
dy X

This condition is not only necessary bul also sullicient [or (1) to be an exact dillerential
equation. (We shall prove this in Sec. 10.2 in another context. Some calculus books (e.g.,
Ref. [GR11] also contain a proof.)

If (1) is exact, the function u(x, y) can be found by inspection or in the following
systematic way. From (4a) we have by integration with respect to x

(6) u :fM dx + k(v);

in this integration, y is to be regarded as a constant, and k(y) plays the role of a “constant™
of integration. To determine k(y), we derive du/dy from (6), use (4b) to get dk/dy, and
integrate dk/dy to get k.

11

How to Find Integrating Factors

We multiply a given nonexact equation
(12) Plx,y) dx + Q(x.y) dy = 0,

by a function F that, in general, will be a function of both x and y. We want the
result to be an exact equation

(13) FPdx + FQdy =0

so we can solve it as just discussed. Such a function F(x, y) is then called an
integrating factor of (12).

12
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We let

| dF 1 (aP 00
(16) — — =R, where R=—|—-—].
Fodx 0 \ ay ax

Integrating Factor F(x)

If (12) is such thar the right side R of (10), depends only on x, then (12) has an
integrating factor F = F(x), which is obtained by integrating (16) and taking
exponents on both sides,

(17) F(x) = exp “R(.\') dx.

Integrating Factor F *(y)
If (12) is such that the right side R* of (18) depends only on y, then (12) has an
integrating factor F* = F*(y), which is obtained from (18) in the form

(19) F*(y) = exp fR”‘().') dy.
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1.6 Linear Differential Equations
Bernoulli Equation

(D Y+ poy = r(x).
(2) v' + p(x)y = 0 is called homogeneous.
The general solution of the homogeneous ODE (2),

3) y(x) = ce” P dv (c = *¢“ when y=0);

here we may also choose ¢ = 0 and obtain the trivial solution y(x) = 0 for all x in that
interval.

Solution of nonhomogeneous linear ODE (1)

(4) y(x) = el (f(?hj‘ dx + (‘) R h = f{’(-"‘) dx.

15

First-Order ODE, Initial Value Problem

Solve the initial value problem
’ .
¥+ ytanx = sin 2x, v(0) = 1.

Solution. Here p = tan x, r = sin 2x = 2 sin x cos v, and

’p dy = Jrun X dx = In|sec x|

From this we see that in (4),

e = secx, e = cosx, e"r = (sec X)(2 sin x cos x) = 2 sin x.

and the general solution of our equation is

V(x) = cosx (2 ’ sinx dx + 1‘) =ccosx — 2 cos? .

From this and the initial condition, I = ¢-1 — 2-17; thus ¢ = 3 and the solution of our initial value problem
is ¥ = 3 cosx — 2 cos® x. Here 3 cos x is the response to the initial data, and —2 cos? x is the response to the
input sin 2x.

16
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Reduction to Linear Form. Bernoulli Equation

Numerous applications can be modeled by ODEs that are nonlinear but can be transformed
to linear ODEs. One of the most useful ones of these is the Bernoulli equation®

(6) v+ plx)y = gxpy® (a any real number).

If « = 0 or a = 1, Equation (6) is linear. Otherwise it is nonlinear. Then we set
u(x) = [yo]' e
We differentiate this and substitute y" from (6), obtaining
u' = (1 —apny™ %" =1 — apn™%e® — py).
Simplification gives
u' = (1 —ayg — py 9,

where y!=% = 4 on the right, so that we get the linear ODE

(7 u' + (1 —apu = (1 — ag.

Example 5

Logistic Equation

Solve the following Bernoulli equation, known as the logistic equation (or Verhulst nquntiunun
(8) y = Ay — By?

Solution. Write (8) in the form (6). that is,
v - Ay = f_f_\‘2

to see that a = 2, so that u = _\‘l_“ = _\'_L_ Differentiate this 1 and substitute v" from (8),

u' = —_\'_2_\'J = —_\'-21,-'1_\' - B_\'zl =B - ,-'1_\'-1,
The last term is —A_\‘_l = —Auw. Hence we have obtained the linear ODE
w' + Au = B.

The general solution is [by (4)]
w=ce™™ + BiA.

Since w = Ifv. this gives the general solution of (),

18
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(9) V= — = ——a7 (Fig. 18).
R ©
Directly from (8) we see that y = 0 (v(£) = 0 for all 1) is also a solution.
Population y
6 I\
A_al
5= 4
2
[ | | |
0 1 2 3 4 Time ¢
Logistic population model. Curves (9) in Example 4 with A/B = 4
19
20
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